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Abstract

This study proposes new instrumental variable (IV) estimators for linear models, effec-

tively utilizing a continuum of instruments. The effectiveness is attributed to the unique

weighting function employed in the minimum distance objective functions. The proposed es-

timators are robust to weak instruments and heteroscedasticity of unknown form. Moreover,

they are robust to high dimensionality of included and excluded exogenous variables. The

proposed estimators have analytical formulas, which are easily computable. Inference drawn

from these estimators is also straightforward, as their variance estimators for parameter infer-

ences are also analytical. Comprehensive Monte Carlo simulations confirm that the proposed

estimators exhibit excellent finite sample properties and outperform alternative estimators

over a wide range of cases. The new estimation procedure is applied for estimating the elas-

ticity of intertemporal substitution (EIS) in consumption, which is of central importance in

macroeconomics and finance. For quarterly data of the US from Q4 1955 to Q1 2018, the EIS

estimates obtained through our approach exceed one and are statistically significant. These

findings persist across model transformations, different sets of IVs, data structures, and data

ranges.
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1 Introduction

In econometrics, there is a significant body of literature on instrumental variable (IV) methods

that aim to address the endogeneity problem in linear models. Generally, IVs must satisfy the

exogeneity and relevance conditions, yet when the strength of instrumental relevance is weak, we

can encounter the issue of weak instruments or weak identification, which is quite pervasive in

economic applications.

Some IV estimators, like two-stage least squares (TSLS), are known to be susceptible to weak

instruments. The implications of weak instruments on TSLS are highlighted in Nelson and Startz

(1990) and Bound et al. (1995). According to Staiger and Stock (1997), the TSLS and limited

information maximum likelihood (LIML) estimators are theoretically inconsistent and converge

instead to non-standard distributions in a n−1/2 local-to-zero parametrization in the first-stage

regression, where n represents the sample size.

While the assumption that the number of instruments is fixed underpins the conclusions

of Staiger and Stock (1997), Chao and Swanson (2005) revealed that increasing the number

of instruments can improve the estimation accuracy of the LIML and bias-corrected two-stage

least square (BTSLS) estimators in the presence of weak instruments, although TSLS remains

inconsistent. Hansen et al. (2008) formulated corrected standard errors for the LIML estimator

and the Fuller (1977) (FULL) estimator in such cases. However, as pointed out by Bekker and

van der Ploeg (2005) and Hausman et al. (2012), the asymptotic consistency of LIML and FULL,

under many weak instruments asymptotics, breaks down in the presence of heteroskedasticity

of unknown form. To address this issue, Hausman et al. (2012) propose the heteroskedasticity-

robust version of the FULL (HFUL) estimator, which is based on a jackknife version of the LIML

estimator, referred to as HLIM. They demonstrate HFUL outperforms alternative estimators,

such as the jackknife IV estimators (JIVE) developed by Phillips and Hale (1977), Blomquist

and Dahlberg (1999), Angrist et al. (1999), and Ackerberg and Devereux (2009). It is worth

mentioning that the existing studies on many weak instruments originate from a large body

of literature on many instruments, such as Morimune (1983) and Bekker (1994). See also the

comprehensive survey of Anatolyev (2019).

However, determining an appropriate number of instruments for the standard many weak IV

estimators is extremely challenging in practice. In fact, even in the presence of strong instruments,

it is a delicate task to select the correct number of instruments in linear models, as highlighted in
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Morimune (1983), Donald and Newey (2001), and Carrasco and Tchuente (2015), among others.

When a linear reduced form in the first regression is assumed, the asymptotic properties of the

standard many weak IV estimators crucially depend on the interplay between the number of

instruments and their strength, as demonstrated by Chao and Swanson (2005). Unfortunately,

the reduced form is totally unknown in most cases. The standard many weak IV estimators further

require that the linear combination of an increasing number of instruments should approximate

the reduced form sufficiently as the sample size goes to infinity. However, in the presence of

weak instruments, incorporating more instruments can lead to more accurate IV estimates, but

including too many can result in an increase in the bias and variance of the reduced form estimator

in finite samples, hence deteriorating the accuracy of the estimates.

In this study, by utilizing a full continuum of instruments effectively, we propose new nui-

sance parameter-free IV estimators. Therefore, they conveniently address the limitations of the

standard many weak IV estimators. Remarkably, the proposed estimators maintain analytical

formulas and have a natural jackknife form, resembling HLIM and HFUL, respectively. We label

the HLIM-like estimator as WCIV, as its objective function involves a weighted continuum of IVs,

and label the Fuller-like version of WCIV as WCIVF. We demonstrate that WCIV and WCIVF

are consistent and asymptotically normally distributed in the presence of weak instruments and

heteroskedasticity of unknown form. The inference drawn from these estimators is also straight-

forward. Comprehensive Monte Carlo simulations reveal that WCIV and WCIVF outperform

HFUL and other competitors in a wide range of cases. We use WCIV and WCIVF to estimate

the elasticity of intertemporal substitution (EIS) in consumption based on macro datasets from

the US. For the quarterly data ranging from Q4 1955 to Q1 2018, the WCIV and WCIVF esti-

mates of EIS are well above one and statistically different from zero. These findings are robust

to model transformation, different sets of IVs, different data structures and data ranges.

This study makes two main contributions. Firstly, it provides an elegant solution for es-

timating linear models with weak instruments and heteroskedasticity of unknown form, which

are defined in terms of conditional moment restrictions. In this scenario, choosing an appropri-

ate number of moments for standard many weak IV estimators is extremely challenging. The

uniqueness of our approach lies in employing a novel non-integrable weighting function in the

minimum distance objective functions formulated from the continuum of IVs. This weighting

function enjoys some attractive features. One outstanding feature is that its weighting values
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in a neighborhood of the origin tend to be infinite. This is extremely important in terms of

estimation efficiency, as the sample moments generated from the continuum of IVs are most

informative in this neighborhood. Moreover, this weighting function is an increasing function

of the dimension of included and excluded exogenous variables, making estimators robust to

high-dimensionality. This feature is also important because in the presence of weak instruments,

it is advantageous to include more excluded exogenous variables to augment the instrumental

variable relevance, and include more included exogenous variables to safeguard against model

misspecification, or to approximate unobservable factors. In addition, through this weighting

function, the minimum distance objective functions and, consequently, WCIV and WCIVF enjoy

analytical forms; therefore, they are easily computable. Lastly, under this weighting function,

the objective functions are of jackknife representation, which ensures that WCIV and WCIVF

are robust to heteroskedasticity of unknown form. To the best of our knowledge, no previous

weighting function has demonstrated all the above properties simultaneously.

Secondly, the estimates of the EIS in consumption obtained by WCIV and WCIVF suggest

a resolution to a long-standing discrepancy between EIS values in many model calibrations and

those estimated via macro datasets. Previous empirical studies, such as Hall (1988), Campbell

(2003), Yogo (2004), and Ascari et al. (2021), have obtained small EIS values. On the other

hand, the EIS in consumption in many model calibrations is required to be significantly large to

accord with the stylized facts of macroeconomic dynamics.

A continuum of instruments (moments) has been utilized in consistent specification tests for

models defined by conditional moment restrictions; see Bierens (1990) and Bierens and Ploberger

(1997), among others. Similarly, a continuum of moments has been utilized in estimation proce-

dures for models defined by conditional moment restrictions, see, Domı́nguez and Lobato (2004)

and Hsu and Kuan (2011). These studies mainly focus on the consistent parameter estimation

of nonlinear models under minimal global identifying conditions. For linear models, Escanciano

(2018) and Antoine and Lavergne (2014) utilize a continuum of moments that is similar to the one

in this study. Their minimum distance objective functions involve integrable weighing functions.

Their IV estimators are generally inferior to or comparable to HFUL as observed in Antoine

and Lavergne (2014), and worse than WCIV and WCIVF, as demonstrated in this study. On

the other hand, Carrasco and Florens (2000) establish an estimation framework involving a con-

tinuum of moments, extending the generalized method of moments (GMM) of Hansen (1982).
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In order to pursue estimation efficiency, their minimum distance objective function involves a

random weighting function (covariance operator), which is analogous to the optimal weighting

matrix in GMM. This approach depends on a regularization of the covariance operator to solve

an ill-posed problem.

The remainder of the paper is organized as follows. Section 2 introduces the model setup

and new IV estimators. We provide the simple analytical formulas for WCIV and WCIVF, the

variance estimators and, the valid Wald test statistic. Section 3 introduces the nonintegrable

weighting function, and the minimum distance objective functions. Section 4 establishes the

asymptotic theory of our proposed IV estimators. Section 5 conducts a comprehensive Monte

Carlo simulation study. Section 6 presents the application of estimating the EIS in consumption.

Section 7 concludes. The proofs are presented in the Appendix.

Throughout the paper, for a complex-valued function f (·), its complex conjugate is denoted

by f c (·) and |f (·)|2 = f (·) f c (·). The scalar product of vectors τ and ς in a Euclidean space

is denoted by 〈τ , ς〉. The Euclidean norm of X = (X1, ..., Xq) in C
q is ‖X‖, where ‖X‖2 =

∑q
j=1XjX

c
j . Variables X

+ and X++ are independent copies of X, that is, X+, X++ and X are

independent and identically distributed (i.i.d.). For a matrix X, X
′

is its transpose matrix. Let

ϑmin (A) denote the smallest eigenvalue of a symmetric matrix A.

2 Model Setup and New IV Estimators

Consider the following model

yt = α0 + β′
0Yt + εt, t = 1, ..., n,

where Yt is a p × 1 vector of regressors, which is potentially correlated with the error term εt;

θ0 =
(

α0,β
′
0

)′ ⊂ R
1+p. The IV regression approach assumes that there exists a q×1 dimensional

vector of exogenous variables Xt (excluding a constant), q ≥ p, such that, almost surely (a.s.)

E (εt|Xt) = 0. (1)

In this setup, Yt contains the included exogenous variables. Correspondingly, Xt contains these

variables in addition to the excluded exogenous variables. Condition (1) for instrumental exo-

geneity is a conditional moment restriction that appears regularly in macroeconomic and financial
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econometric models, such as log-linearized Euler equations of asset pricing models, dynamic panel

data models, and new Keynesian Phillips curves, to name a few.

With the exogeneity condition being satisfied, the formal identification of the parameter

β0 depends on the conditional expectation E (Yt|Xt). In this context, consider two distinct

parameters
(

α1,β
′
1

)′
and

(

α2,β
′
2

)′
; they are observationally equivalent if and only if

E
(

yt − α1 − β′
1Yt|Xt

)

= E
(

yt − α2 − β′
2Yt|Xt

)

,

or

(α1 − α2) + (β1 − β2)
′E (Yt|Xt) = 0.

Clearly the identification strength of β0 directly depends on E [Yt|Xt], while α0 is always strongly

identified. When E [Yt|Xt] flattens to zero as the sample size increases (cf. Assumption 2 in

Section 4), the IV estimate of β0 may suffer from the weak identification problem.

This study utilizes a continuum of instruments, such that

exp (i 〈τ ,Xt〉) , for all τ ∈ R
q.

Precisely, we employ the following continuum of unconditional moment restrictions:

E
{[

yt − µy − β′
0 (Yt − µY )

]

exp (i 〈τ ,Xt〉)
}

= 0, for all τ ∈ R
q, (2)

where µy = E (yt) and µY = E (Yt). It is observed that α0 is canceled out. In this study the

focus is on β0. Clearly, there exists an equivalence between (1) and (2).

Although we utilize a continuum of instruments, our proposed estimators WCIV and WCIVF

enjoy convenient analytical formulas. To describe them, let Y = [Y1, ...,Yn]
′, y = [y1, ..., yn]

′,

Ȳ = 1
n

∑n
t=1Yt, ȳ = 1

n

∑n
t=1 yt. Define

Ỹ =
[

Y1 − Ȳ, ...,Yn − Ȳ
]′

and

ỹ = [y1 − ȳ, ..., yn − ȳ]′ .
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Let D be a square matrix of size n and Djk denote the (j, k)th element of D, such that

Djk = −‖Xj −Xk‖ , j, k = 1, ..., n.

The WCIV estimator is given as

β̂WCIV =
[

Ỹ′
(

D− λ̂WCIV In

)

Ỹ
]−1 [

Ỹ′
(

D− λ̂WCIV In

)

ỹ
]

(3)

α̂WCIV = ȳ − β̂
′
WCIV Ȳ, (4)

where In is an identity matrix of size n and

λ̂WCIV is the smallest eigenvalue of
(

Y̌′Y̌
)−1

Y̌DY̌

with Y̌ =
[

ỹ, Ỹ
]

. The WCIVF estimator is written as (3), replacing λ̂WCIV with

[

λ̂WCIV −
(

1− λ̂WCIV

)

C/n
]

/
[

1−
(

1− λ̂WCIV

)

C/n
]

,

where C is a constant.

Clearly, WCIV and WCIVF resemble HLIM and HFUL, respectively, as Djj = 0 for j =

1, .., n. Recall that conventional k-class IV estimators are of the form







α̂

β̂






=
[

Y∗′
(

P− λ̂In

)

Y∗
]−1 [

Y∗′
(

P− λ̂In

)

y
]

,

where Y∗ = [ι,Y], ι is the vector of ones, and P is a matrix that depends on n × m matrix

Z of instrumental variable observations with rank (Z) = m ≥ p + 1. TSLS corresponds to

P = Z (Z′Z)−1
Z′, and λ̂ = 0; JIVE corresponds to P = Z (Z′Z)−1

Z′ − diag
(

Z (Z′Z)−1
Z′
)

and

λ̂ = 0; LIML corresponds to P = Z (Z′Z)−1
Z′, and λ̂ equals to the smallest eigenvalue of

(

Y̌∗′Y̌∗)−1
Y̌∗PY̌

∗
with Y̌∗ = [y,Y∗]; HLIM corresponds toP = Z (Z′Z)−1

Z′−diag
(

Z (Z′Z)−1
Z′
)

,

λ̂ equals to the smallest eigenvalue of
(

Y̌∗′Y̌∗)−1
Y̌∗′PY̌

∗
. Finally, HFUL employs

λ̂HFUL =
[

λ̂HLIM −
(

1− λ̂HLIM

)

C/n
]

/
[

1−
(

1− λ̂HLIM

)

C/n
]
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in HLIM.

Moreover, the valid Wald test statistic for parameter inference is easily computable. Consider

testing the parametric restriction of the form

H0 : g (β0) = 0, (5)

where g (·) is a function from R
p on R

m with m ≤ p.

To describe the Wald statistic, let θ =
(

α,β′)′, εt (θ) = yt − α − β′Yt, Ỹt = Yt − Ȳ,

D̃ (λ) = D− λIn and D̃jk (λ) denote the (j, k)th element of D̃ (λ). Define

Ŝ1 (θ, λ) =
1

n3

n
∑

j=1

n
∑

k=1

n
∑

l=1

ỸjỸ′
kεl (θ)

2 D̃jl (λ) D̃kl (λ) ,

Ŝ2 (θ, λ) =
1

n5

n
∑

l=1

εl (θ)
2





n
∑

j=1

n
∑

k=1

ỸjD̃jk (λ)









n
∑

j=1

n
∑

k=1

Ỹ′
jD̃jk (λ)



 ,

Ŝ3 (θ, λ) =
1

n4

n
∑

j=1

n
∑

k=1

εk (θ)
2
ỸjD̃jk (λ)

n
∑

j=1

n
∑

k=1

Ỹ′
jD̃jk (λ) ;

further,

Ω̂ (θ, λ) = Ŝ1 (θ, λ) + Ŝ2 (θ, λ)− Ŝ3 (θ, λ)− Ŝ′
3 (θ, λ) ,

and

Υ̂ (λ) =
1

n2
Ỹ′D̃ (λ) Ỹ.

The Wald test statistic is constructed as

Wn

(

θ̂
)

= ng
(

β̂
)′
(

G
(

β̂
)

V̂
(

θ̂, λ̂
)

G
(

β̂
)′
)−1

g
(

β̂
)

, (6)

where G
(

β̂
)

= ∂g
(

β̂
)

/∂β′, V̂ (θ, λ) = Υ̂ (λ)−1
Ω̂ (θ) Υ̂ (λ)−1.

It is observed that V̂ (θ, λ) has a sandwich form and is easy to compute, unlike Hausman

et al. (2012) where an extra term is included to account for the numerosity of instruments. It

is worth mentioning that V̂ (θ, λ) /n is not a consistent variance estimator for the population

variance of β̂WCIV or β̂WCIV F under weak instruments, which involves the unknown degrees of

weak identification.
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3 Nonintegrable Weighting Function and Objective Functions

To fully utilize the continuum of moments (2) we have introduced in previous section, a distance

measure is to be formulated. Denote

h (β, τ ) = E
{[

yt − µy − β′ (Yt − µY )
]

exp (i 〈τ ,Xt〉)
}

,

and its sample analog

hn (β, τ ) =
1

n

n
∑

t=1

(

ỹt − β′Ỹt

)

exp (i 〈τ ,Xt〉) ,

where ỹt = yt − ȳ. The distance measure has the form

∫

Rq

|h (β, τ )|2W (dτ )

and its sample analog is
∫

Rq

|hn (β, τ )|2W (dτ ) ,

where W (·) is an arbitrary positive weighting function for which the integrals mentioned above

exist.

Clearly, W (·) is pivotal in terms of estimation accuracy, as it acts similar to the weighting

matrix in the objective function of GMM in Hansen (1982). Different choices of W (·) give rise

to associated IV estimators with different asymptotic properties. It is possible to introduce

a random weighting function, following Carrasco and Florens (2000). However, under weak

instruments and heteroskedasticity of unknown form, it is extremely challenging to follow this

approach. Further, their approach requires a regularization of the weighting function, which

involves a tuning parameter and is quite difficult to implement in practice. Instead, our approach

employs a nonrandom weighting function in the distance measure, which avoids the challenging

issue regarding the selection of an appropriate number of instruments or a tuning parameter.

One main contribution of this study is to introduce a unique nonintegrable weighting function,

which renders the proposed estimators outstanding theoretical and empirical properties, deviating

substantially from Escanciano (2018) and Antoine and Lavergne (2014), where some integrable

weighting functions, such as the standard normal density function, are employed.

Intuitively, from the perspective of the estimation efficiency of GMM, more weighting values
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Figure 1: Standard normal density function (dashed curve) vs. 1/(πτ 2) (solid curve)

should be attributed to more informative sample moments in the minimum distance objective

function. When τ is in a neighborhood of the origin, hn (β, τ ) contains more information, as it

can be shown, under some regularity conditions,

E
∣

∣

√
nhn (β0, τ )

∣

∣

2
=

2 (n− 1)2

n2
E
{

ε2t
[

1− cos
(〈

τ ,Xt −X+
t

〉)]}

.

Hence, weighting values as high as possible in a neighborhood of the origin is preferred. To this

end, we employ a nonintegrable weighting function, such that

W (τ ) =
1

cq ‖τ‖q+1 , (7)

where cq is a constant defined in Lemma 8.1 in the Appendix. One outstanding feature of (7) is

that its weighting values tend to infinity as ‖τ‖ → 0, which is strikingly different from integrable

weighting functions, such as a standard normal density function. Figure 1 demonstrates this fact

for a standard normal density function, and (7) with q = 1.

Another important feature of (7) is that it is an increasing function of q. Note that
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(

cq ‖τ‖q+1
)−1

=
Γ ((q + 1) /2)

π(q+1)/2

(

‖τ‖q+1
)−1

=
(q − 1)!!

(2π)q/2 ‖τ‖q+1
,

where q!! is a double factorial, such that

q!! =































q · (q − 2) ...5 · 3 · 1 q > 0 odd

q · (q − 2) ...6 · 4 · 2 q > 0 even

1 q = −1, 0.

By applying an approximation to (q − 1)!!, when q > 1, we have

(

cq ‖τ‖q+1
)−1

≈ c (q − 1)q/2 e−(q−1)/2 1

(2π)q/2 ‖τ‖q+1

≈ c
√
e

(

q − 1

2πe

)q/2
(

‖τ‖q+1
)−1

≈ c
√
e

‖τ‖

(

q − 1

2πe ‖τ‖2
)q/2

,

where c =
√
π for q − 1 is even and

√
2 for q − 1 is odd. Therefore, for a fixed value ‖τ‖ in

a neighborhood of the origin, (7) is an increasing function of q. This is important, as in weak

instruments scenarios, it is well motivated to introduce more excluded exogenous variables to

improve the IV strength in addition to the fact that many exogenous regressors are typically in-

cluded to guard against model misspecification or approximate some important but unobservable

factors. On the other hand, a q-dimensional standard normal density function is a decreasing

function of q, given a ‖τ‖. Notably, its weighting value equals (2π)−q/2 at the origin, being the

maximum. It sharply shrinks to zero when q increases.

The nonintegrable weighting function was first introduced by Székely et al. (2007) in the

statistics literature. Studies involving this weighting function include Székely and Rizzo (2009),

Székely and Rizzo (2014), Shao and Zhang (2014), Davis et al. (2018), Zhang et al. (2018), Yao

et al. (2018), and Wang (2021) in testing framework. In the following, write

∫

Rq

|h (β, τ )|2

cq ‖τ‖q+1 dτ =

∫

Rq

|h (β, τ )|2ω (dτ ) ,
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where ω (dτ ) =
(

cq ‖τ‖q+1
)−1

dτ for notational simplicity. The third feature of this noninte-

grable weighting function is that
∫

Rq |h (β, τ )|2ω (dτ ) enjoys a convenient analytical form, as

demonstrated by Lemma 3.1.

Lemma 3.1 Under Assumptions 1-3 presented in the next section, for any β ∈Rp,

∫

Rq

|h (β, τ )|2ω (dτ ) = −E
[(

yt − µy − β′ (Yt − µY )
) (

y+t − µy − β′ (Y+
t − µY

)) ∥

∥Xt −X+
t

∥

∥

]

,

(8)

where
(

y+t ,
(

X+
t

)′)′
is an i.i.d. copy of (yt,X

′
t)
′.

Proof. See the Appendix.

It is possible to obtain a new IV estimator by minimizing the sample analog of (8). However,

preliminary Monte Carlo simulations have revealed that this estimator can be very biased in

the presence of weak instruments and a high dimensionality of Xt. To improve the estimation

accuracy under these circumstances, we construct a LIML-like objective function, which is a

weighted version of (8), as follows:

β0 = argmin
β

∫

Rq |h (β, τ )|2ω (dτ )

E
(

[

yt − µy − β′ (Yt − µY )
]2
) , (9)

α0 = µy − β′
0µY . (10)

Then, the WCIV estimator is defined as the minimizer of the sample analog of (9), such that

β̂WCIV=argmin
β







(

ỹ − Ỹβ
)′

D
(

ỹ − Ỹβ
)

(

ỹ − Ỹβ
)′ (

ỹ − Ỹβ
)






, (11)

α̂WCIV = ȳ − β̂
′
WCIV Ȳ. (12)

Obtaining (3) is straightforward and analogous to the computation of HLIM. Moreover, WCIV

remains invariant to normalization, similar to the case of HLIM. However, like HLIM, WCIV may

suffer from the moments problem in some cases. To address this issue, this study suggests utiliz-

ing a Fuller-type finite sample correction of WCIV (WCIVF), following the approach presented

in Fuller (1977), Hahn et al. (2004), and Hausman et al. (2012). WCIVF is obtained directly by re-

placing λ̂WCIV in the WCIV estimator (3) with
[

λ̂WCIV −
(

1− λ̂WCIV

)

C/n
]

/
[

1−
(

1− λ̂WCIV

)

C/n
]

.
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It is worth noting that both WCIV and WCIVF possess natural jackknife representation, making

them robust to heteroskedasticity of unknown form.

It is worth mentioning that Antoine and Lavergne (2014) use an integrable weighting function

in objective functions, based on a continuum of moments:

E
{[

yt − θ′
0Y

∗
t

]

exp (i 〈τ ,Xt〉)
}

= 0, for all τ ∈ R
q,

where Y∗
t = (1,Y′

t)
′. When a standard normal density function is chosen, the MD estimator is

calculated as

θ̂MD=argmin
θ

[

(y −Y∗θ)′K (y −Y∗θ)
]

,

where K is a n× n matrix, such that Kjk = exp
(

−‖Xj −Xk‖2 /2
)

for j 6= k, and Kjj = 0 for

j, k = 1, ..., n. Note that exp
(

−‖Xj −Xk‖2 /2
)

= 1 6= 0, when j = k. Therefore the diagonal

elements of K need to be set to zero to form a jackknife form.1 The WMD estimator is

θ̂WMD=argmin
θ

[

(y −Y∗θ)′K (y −Y∗θ)

(y −Y∗θ)′ (y −Y∗θ)

]

.

Note that in Antoine and Lavergne (2014), the full parameter vector θ can be estimated by

minimizing the objective function. Consequently, the formula of θ̂MD and θ̂WMD can be obtained,

such that

θ̂MD=
[

Y∗′KY∗]−1 [
Y∗′Ky

]

,

θ̂WMD =
[

Y∗′
(

K− λ̂WMDIn

)

Y∗
]−1 [

Y∗′
(

K− λ̂WMDIn

)

y
]

, (13)

where λ̂WMD is the minimum value of the objective function, which can be explicitly computed

as the smallest eigenvalue of
(

Y̌∗′Y̌∗)−1
Y̌∗′KY̌∗ with Y̌∗ = [y,Y∗]. Its Fuller-style variant

WMDF is obtained directly by replacing λ̂WMD in the WMD estimator (13) with

[

λ̂WMD −
(

1− λ̂WMD

)

C/n
]

/
[

1−
(

1− λ̂WMD

)

C/n
]

.

It appears that both WMD and WCIV (WMDF and WCIVF) share many similarities, but

they are constructed on distinct estimation frameworks. Due to the fundamental difference

between the weighting functions in the objective functions, WCIV and WCIVF are expected to

1The MD estimator, without setting zero values for the diagonal elements of K, corresponds to the IV estimator
proposed by Escanciano (2018).
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be less dispersed than WMD and WMDF in finite samples.

4 Asymptotic Theory

To appreciate the asymptotic theory of WCIV and WCIVF, we introduce some assumptions.

Assumption 1 Let Wt denote a vector containing distinct elements of (yt,Y
′
t,X

′
t)
′. {Wt}nt=1

are i.i.d. E ‖Xt‖2 <∞.

Assumption 2 Yt = E (Yt|Xt) + ηt.

E (Yt|Xt) =
Rnf (Xt)√

n
,

where Rn = R̃ndiag (r1,n, ..., rq,n), such that R̃n is bounded, and the smallest eigenvalue of R̃nR̃
′
n

is bounded away from zero. For each j, rj,n =
√
n or rj,n/

√
n → 0, rn = min1≤j≤q rj,n → ∞.

1
n2

∑

j

∑

k f̃ (Xj)Djk f̃ (Xk)
′ is finite and positive definite, where f̃ (Xt) = f (Xt)− 1

n

∑n
j=1 f (Xj).

Assumption 3 There exists a constant C, such that E (εt|Xt) = 0, E (ηt|Xt) = 0, E
(

ε2t |Xt

)

<

C,E
(

‖ηt‖2 |Xt

)

< C, V ar
(

(εt,η
′
t)
′ |Xt

)

= diag (Ω∗
t , 0), and ϑmin (

∑n
t=1Ω

∗
t ) ≥ 1/C, a.s.

Assumption 1 allows for the i.i.d. observations. Potentially, we can extend this to allow for

weakly dependent time series processes.

Assumption 2 is quite similar to Assumption 2 in Hausman et al. (2012), allowing linear

combinations of β to have different degrees of identifications. It accommodates IV regressions

involving included exogenous variables. For example, consider an IV regression with one endoge-

nous variable, one included exogenous variable, and one instrumental variable.

yt = α0 ++β01Zt1 + β02Yt1 + εt,

where Zt1 is the included exogenous variables. Hence, Yt = (Zt1, Yt1)
′, Xt = (Zt1, Xt1)

′. Let the

reduced form be partitioned conformably with β = (β01, β02)
′. As

E (Yt|Xt) =

(

Zt1, π1Zt1 +
r2n√
n
f2 (Xt)

)′

=







1 0

π1 1













√
n/

√
n 0

0 r2n/
√
n













Zt1

f2 (Xt)






.
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This reduced form is specified in Assumption 2 with

R̃n =







1 0

π1 1






, r1n =

√
n, f (Xt) =







Zt1

f2 (Xt)






.

Although we do not generally require f (Xt) to be known and linear in included exogenous vari-

ables, this study has been unable to simplify Assumption 2 while including such basic situations.

The positive definiteness of 1
n2

∑

j

∑

k f̃ (Xj)Djk f̃ (Xk)
′ implies its minimum eigenvalue is posi-

tive. Further, it is noted that the rates of decay to zero are slower than
√
n, this has been labeled

as nearly-weak identification or semi-strong identification by some previous studies. This study

adopts the ”many weak instruments” tag, following Hansen et al. (2008), Newey and Windmeijer

(2009), and Hausman et al. (2012).

Assumption 3 is similar to Assumption 3 in Hausman et al. (2012), requiring bounded second

conditional moments of disturbances and uniform nonsingularity of the variance of the reduced

form of disturbances.

Theorem 4.1 establishes the consistency for WCIV and WCIVF.

Theorem 4.1 Under Assumptions 1-3, for β̂ = β̂WCIV or β̂WCIV F , α̂ = α̂WCIV or α̂WCIV F

R′
n

(

β̂ − β0

)

/rn
p→ 0,

β̂
p→ β, α̂

p→ α0.

Proof. See the Appendix.

To discuss asymptotic normality, some additional assumptions are required.

Assumption 4 There exists a constant C > 0, such that E
(

ε4t |Xt

)

< C,E
(

‖ηt‖4 |Xt

)

< C

a.s. E ‖Wt‖4 <∞.

We state the asymptotic normality theorem.

Theorem 4.2 Under Assumptions 1-4, for β̂ = β̂WCIV or β̂WCIV F ,

(√
nR−1′

n Ω (θ0)
√
nR−1

n

)−1/2 (√
nR−1′

n ΥR−1
n

√
n
)

R′
n

(

β̂ − β0

)

d→ N (0, Ip) ,

where

Υ = −E
[

(Yt − µY )
(

Y+
t − µY

)′ ∥
∥Xt −X+

t

∥

∥

]

,
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Ω (θ0) = S1 (θ0) + S2 (θ0)− S3 (θ0)− S3 (θ0)
′

in which

S1 (θ0) = E
(

(

y++
t − α0 − β′

0Y
++
t

)2
(Yt − µY )

∥

∥Xt −X++
t

∥

∥

(

Y+
t − µY

)′ ∥
∥X+

t −X++
t

∥

∥

)

,

S2 (θ0) = E
[

(

yt − α0 − β′
0Yt

)2
]

E
(

(Yt − µY )
∥

∥Xt −X+
t

∥

∥

)

E
(

(Yt − µY )
′ ∥
∥Xt −X+

t

∥

∥

)

,

S3 (θ0) = E
(

(

y+t − α0 − β′
0Y

+
t

)2
(Yt − µY )

∥

∥Xt −X+
t

∥

∥

)

E
(

(Yt − µY )
′ ∥
∥Xt −X+

t

∥

∥

)

.

Proof. See the Appendix. In this theorem, we establish the asymptotic normality for β̂WCIV

and β̂WCIV F . We regard α0 as a nuisance parameter and do not pursue its asymptotic distribu-

tion.

In the following theorem, we establish the validity of the Wald test statistic for parameter

inference regarding β0.

Theorem 4.3 Under Assumptions 1-4, if g (·) is continuously differentiable twice and G (β0) is

of full rank, for testing the null (5), considering
(

θ̂,λ̂
)

=
(

θ̂WCIV , λ̂WCIV

)

or
(

θ̂WCIV F , λ̂WCIV F

)

,

Ω̂
(

θ̂, λ̂
)

p→ Ω (θ0) ,

Υ̂
(

λ̂
)

p→ Υ,

Wn

(

θ̂
)

d→ χ2
m.

Proof. See the Appendix.

This theorem demonstrates that under the null, Wn

(

θ̂
)

has a convenient chi-squared dis-

tribution asymptotically, despite the fact that the degrees of identification are unknown. An

important implication of the Wald test statistic is that, without the knowledge of the degrees of

weak identification, a large sample inference can be conducted in the usual way. In particular,

we can obtain the t-statistic by treating β̂ as if it were normally distributed with mean β0 and

variance V̂
(

θ̂, λ̂
)

/n. Under the null, the t-statistic
(

β̂j − β0j

)

/

√

V̂jj

(

θ̂, λ̂
)

/n will be asymp-

totically normal.Our Monte Carlo simulations show that t-statistics have excellent finite sample

properties for a wide range of scenarios. In the application, we report

√

V̂jj

(

θ̂, λ̂
)

/n, as if it is

the conventional standard deviation.

The estimation efficiency of an estimator is a highly desired property. Under the standard
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asymptotic framework, the estimation efficiency of IV estimators can be achieved by utilizing

an increasing number of instruments. There is some discussion on estimation efficiency in the

literature on many instruments, see, for example, Hahn (2002), Anderson et al. (2010), and

Kunitomo (2012). However, these theoretical results are quite limited. In many weak instruments

asymptotics, an increasing number of instruments are required to ensure estimation consistency.

The ratio between the number of IVs and the sample size does not necessarily align with the one

required by an efficient IV estimation. Additionally, the estimation efficiency of IV estimators

involves optimal weighting matrix, which is difficult to be estimated accurately under many

instruments and heteroskasticity of unknown form. Regarding WCIV and WMD (WCIVF and

WMDF), intuition suggests WCIV (WCIVF) is more efficient than WMD (WMDF) due to the

specialty of the nonintegrable weighting function. However the theoretical validation is quite

challenging and beyond the scope of this study. This study resorts to Monte Carlo simulations to

evaluate the accuracy of the asymptotic approximations and compare the performance of these

competitive estimators.

5 Monte Carlo Evidence

In this section, we evaluate the finite sample performance of WCIV and WCIVF, and compare it

with that of WMD, WMDF, and HFUL. To describe HFUL, denote Xr
t =

(

Xr
1,t, ..., X

r
q,t

)′
, where

r is a positive integer. The instruments include a constant and pairwise instruments

(

X′
t,
(

X2
t

)′
,
(

X3
t

)′
,
(

X4
t

)′
,X′

td1, ...,X
′
tdL−4

)′
,

where dl ∈ {0, 1} and Pr (dl = 1) = 1/2. We consider L = 1, 4, or 9, that is, when L = 1, the

instruments are (1,X′
t)
′; when L = 4, (1,X′

t,
(

X2
t

)′
,
(

X3
t

)′
,
(

X4
t

)′
)′; when L = 9,

(1,X′
t,
(

X2
t

)′
,
(

X3
t

)′
,
(

X4
t

)′
,X′

td1, ...,X
′
td5)

′.

We denote these HFUL estimators as HFUL1, HFUL4, and HFUL9, respectively. The com-

parisons are in terms of median bias, range between the 0.05 and 0.95 quantiles, and empirical

rejection frequencies for t-statistics at the 5% nominal level of the estimators. The number of

Monte Carlo simulations is 10, 000.
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5.1 Setup 1

Consider following linear models M1-M3, such that

M1 : yt = α0 + β0Yt + εt, Yt =

√

c/q

n

q
∑

j=1

Xj,t + ηt,

M2 : yt = α0 + β0Yt + εt, Yt =

√

c/q

n

q
∑

j=1

X2
j,t + ηt,

M3 : yt = α0 + β0Yt + εt, Yt = 1







√

c/q

n

q
∑

j=1

Xj,t + ηt > 0







,

where 1 {·} denotes the indicator function. To mimic empirical situations, allowXt = (X1,t, ..., Xq,t)
′

to follow

Xj,t =
e0,t + ej,t√

2
, j = 1, ..., q,

where (e0,t, e1,t, ..., eq,t)
′ ∼ i.i.d.N (0, Iq+1). By construction, the correlation coefficient between

Xj,t and Xk,t for j 6= k is 0.5 owing to the presence of the common shocks e0,t. εt is allowed to

be heteroskedastic as

εt = ρηt +

√

1− ρ2

φ2 + (0.86)4
(

φη1,t + 0.86η2,t
)

, η1,t ∼ N
(

0, X2
1,t

)

, η2,t ∼ N
(

0, 0.862
)

,

where η1,t and η2,t are independent of ηt. Hausman et al. (2012) show that this design causes

LIML to be inconsistent when φ 6= 0. In M1, E (Yt|Xt) is linear. In M2 and M3, E (Yt|Xt)

is nonlinear. We set α0 = β0 = 0 without loss of generality and consider a sample size of

n = 250, c = 10 and ρ = 0.6. Further, we consider q = 3, 10, 15, φ = 0, 0.5. When φ = 0, εt is

homoskedastic, φ = 0.5, εt heteroskedastic.

In Tables 1–3, we report the simulation results on β0 for WCIV, WCIVF(C = 1), WMD,

WMDF(C = 1), HFUL1(C = 1), HFUL4(C = 1) and HFUL9(C = 1). The main features of the

results are as follows:

1. For M1, when q = 3, HFUL1 has the best performance in terms of the range between

the 0.05 and 0.95 quantiles (DecR), while HFUL4 and HFUL9 are much more dispersed.

However, for q = 10 and 15, WCIV and WCIVF outperform HFUL1, HFUL4, and HFUL9
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regarding DecR when φ = 0 or 0.5. Additionally, WCIV and WCIVF are almost me-

dian unbiased for all cases, whereas HFUL1, HFUL4, and HFUL9 show relatively large

median biases, consistent with the results of simulations in Hausman et al. (2012). With

regard to the empirical properties of the t-statistics, both WCIV and WCIVF have accurate

empirical sizes, whereas HFUL1 is undersized, and HFUL9 is oversized, especially for high-

dimensional cases. WMD and WMDF exhibit comparable features to WCIV and WCIVF

in terms of median biases and empirical properties of the t-statistics but have substantially

larger DecR, as expected. Furthermore, while both WCIVF and WCIV perform similarly,

WMDF outperforms WMD in terms of DecR but performs worse than WMD in terms of

median biases and properties of the t-statistics, particularly for high-dimensional cases.

2. ForM2, HFUL1 is severely median biased and dispersed, while HFUL4 and HFUL9 is much

less biased and less dispersed, as the linear instruments employed in HFUL1 cannot ap-

proximate the nonlinear reduced form sufficiently. However, both WCIV and WCIVF are

almost median unbiased, with empirical rejection frequencies for the t-statistics well con-

trolled. In terms of DecR, WCIV and WCIVF outperform WMD and WMDF substantially,

and better than HFULs except for HFUL4 in the case of q = 3.

3. ForM3, HFUL1, HFUL4, and HFUL9 are all heavily median biased, especially when q = 3,

while WCIV and WCIVF are almost median unbiased in all cases. So are WMD and

WMDF when q is small. When q is large, however, it appears that WMDF worsens in

terms of median bias, whereas it is less dispersed than WMD. In terms of DecR, WCIV and

WCIVF outperform WMD and WMDF substantially in all cases, and better than HFULs

except for HFUL1 in the case of q = 3.

In summary, we conclude that WCIV and WCIVF have exceptional finite-sample properties

in the context of Setup 1. They exhibit almost median unbiasedness in all cases, and their empir-

ical rejection frequencies of the t-statistics are close to the nominal value. They are considerably

less dispersed than WMD and WMDF in all cases. In comparison with HFUL, both WCIV and

WCIVF exhibit less dispersion in numerous cases, particularly for nonlinear reduced forms and

large values of q. Furthermore, HFUL is generally more biased than WCIV and WCIVF. Addi-

tionally, the finite-sample properties of HFUL are significantly sensitive to the number of selected

instruments, particularly when the reduced forms are nonlinear. These findings demonstrate that
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WCIV WCIVF WMD WMDF HFUL1 HFUL4 HFUL9

φ = 0 q = 3
Med 0.0015 0.0016 0.0017 0.0047 0.0330 0.0339 0.0464
DecR 0.8347 0.8341 1.0607 1.0452 0.7504 0.8806 1.1013
Rej 0.0537 0.0537 0.0547 0.0554 0.0336 0.0510 0.0797

q = 10
Med 0.0016 0.0018 0.0015 0.0096 0.0111 0.0151 0.0209
DecR 0.4722 0.4717 0.7321 0.7052 0.4768 0.6338 0.9444
Rej 0.0513 0.0514 0.0458 0.0506 0.0114 0.0308 0.0740

q = 15
Med 0.0000 0.0003 -0.0004 0.0337 0.0084 0.0126 0.0293
DecR 0.3782 0.3780 0.7192 0.6159 0.3877 0.5617 0.9736
Rej 0.0472 0.0474 0.0507 0.0664 0.0040 0.0197 0.0741

φ = 0.5 q = 3
Med -0.0031 -0.0030 -0.0061 -0.0034 0.0361 0.0400 0.0524
DecR 0.9336 0.9337 1.1291 1.1103 0.8453 0.9939 1.2257
Rej 0.0503 0.0503 0.05 0.0509 0.0362 0.0574 0.0882

q = 10
Med -0.0017 -0.0015 -0.0012 0.0070 0.0135 0.0172 0.0224
DecR 0.4993 0.4989 0.7219 0.6993 0.5141 0.6510 0.9754
Rej 0.0458 0.0458 0.0507 0.0538 0.0144 0.0337 0.0738

q = 15
Med 0.0002 0.0005 -0.0018 0.0317 0.0111 0.0141 0.0228
DecR 0.4054 0.4048 0.6831 0.5891 0.4186 0.5765 0.9542
Rej 0.0500 0.0500 0.0487 0.0632 0.0080 0.0285 0.0768

Table 1: Linear IV model M1 : yt = α0 + β0Yt + εt, Yt =

√

c/q
n

∑q
j=1Xj,t + ηt. Median bias

(Med), the range between the 0.05 and 0.95 quantiles (DecR), and empirical rejection frequencies
for t-statistics at 5% nominal level (Rej) are reported.

HFUL may provide misleading estimates when the reduced forms are not well-approximated using

linear combinations of the selected instruments.

5.2 Setup 2

We consider alternative linear modelsM4-M6, which are similar to Antoine and Lavergne (2014),

such that

M4 : yt = α0 + β0Yt +
√

0.5 + 0.5X2
1,tεt, Yt =

√

c/q

n0.45

q
∑

j=1

Xj,t + ηt,

M5 : yt = α0 + β0Yt +
√

0.5 + 0.5X2
1,tεt, Yt =

√

c/q

n0.45

q
∑

j=1

Xj,t + exp(0.5 + 0.5X1,t,)ηt,

M6 : yt = α0 + β0Yt +
√

0.5 + 0.5X2
1,tεt, Yt = exp





√

c/q

n0.45

q
∑

j=1

Xj,t



+ ηt.
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WCIV WCIVF WMD WMDF HFUL1 HFUL4 HFUL9

φ = 0 q = 3
Med 0.0000 0.0009 -0.0020 0.0028 0.5617 0.0267 0.0272
DecR 1.0401 1.0326 1.2310 1.1989 1.5104 0.7683 0.9729
Rej 0.0398 0.0398 0.0512 0.0516 0.5472 0.0436 0.0701

q = 10
Med 0.0000 0.0029 0.0016 0.0163 0.4764 0.0137 0.0281
DecR 0.6050 0.5941 1.0552 0.9506 1.9397 0.6783 1.0975
Rej 0.0373 0.0382 0.0504 0.0558 0.5252 0.0256 0.0719

q = 15
Med -0.0009 0.0012 -0.0026 0.0576 0.4480 0.0142 0.0470
DecR 0.4831 0.4772 1.1197 0.7513 2.0637 0.6847 1.2875
Rej 0.0366 0.0379 0.0574 0.0808 0.5118 0.0260 0.0804

φ = 0.5 q = 3
Med -0.0189 -0.0165 -0.0118 -0.0069 0.5668 0.0317 0.0379
DecR 1.1754 1.1458 1.2764 1.2380 1.5758 0.8506 1.0585
Rej 0.0359 0.0362 0.0474 0.0482 0.5313 0.0555 0.0808

q = 10
Med -0.0092 -0.0059 -0.0107 0.0048 0.5072 0.0178 0.0310
DecR 0.6711 0.6615 1.0626 0.9508 1.9612 0.7379 1.1046
Rej 0.0351 0.0366 0.0466 0.0519 0.5471 0.0345 0.0757

q = 15
Med -0.0030 -0.0003 -0.0030 0.0590 0.4479 0.0168 0.0399
DecR 0.5380 0.5282 1.0702 0.7366 2.0453 0.7144 1.2552
Rej 0.0408 0.0415 0.055 0.0780 0.5172 0.0302 0.085

Table 2: Linear IV model M2 : yt = α0 + β0Yt + εt, Yt =

√

c/q
n

∑q
j=1X

2
j,t + ηt. Median bias

(Med), the range between the 0.05 and 0.95 quantiles (DecR), and empirical rejection frequencies
for t-statistics at 5% nominal level (Rej) are reported.

Note that heteroskedasticity in model disturbances is allowed for. In all models εt and ηt follow a

joint normal distribution with a covariance matrix







1 ρ

ρ 1






. Xt = (X1,t, ..., Xq,t)

′ follows the

same process as in Setup 1. The reduced form inM4 is a linear model with homoskedastic errors;

the reduced form in M5 is a linear model with heteroskedastic errors; while the reduced form in

M6 is nonlinear. We set α0 = β0 = 0 again. In the simulations, we values c = 4, 8, ρ = 0.8

and n = 250. Clearly, when c = 4, the degree of weak identification is more severe. We consider

q = 4, 8 and 16 to check the finite sample properties of estimators under different dimensions of

conditioning variables.

Tables 4–6 report the simulation results of β0 for WCIV, WCIVF(C = 1), WMD,WMDF(C =

1), HFUL1(C = 1), HFUL4(C = 1), and HFUL9(C = 1). The general conclusions are similar to

those presented in Setup 1. That is, WCIV and WCIVF have excellent finite sample properties,
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WCIV WCIVF WMD WMDF HFUL1 HFUL4 HFUL9

φ = 0 q = 3
Med -0.0062 -0.0057 0.0006 0.0091 0.0843 0.1167 0.1554
DecR 2.3123 2.3006 3.1884 3.0489 1.9550 2.5684 3.5802
Rej 0.0442 0.0442 0.0457 0.0465 0.0233 0.0478 0.0829

q = 10
Med -0.0095 -0.0090 -0.0046 0.0175 0.0369 0.0455 0.1031
DecR 1.2964 1.2948 2.3624 2.2003 1.3876 2.0770 3.4899
Rej 0.0419 0.0420 0.0462 0.0483 0.0094 0.0327 0.0726

q = 15
Med -0.0026 -0.0017 -0.0114 0.0759 0.0248 0.0412 0.1182
DecR 1.1017 1.1006 2.3307 1.8374 1.2120 1.9415 3.7257
Rej 0.0483 0.0487 0.0478 0.0606 0.0046 0.0309 0.0800

φ = 0.5 q = 3
Med -0.0028 -0.0023 -0.0121 -0.0043 0.1153 0.1288 0.1585
DecR 2.5261 2.5255 3.3285 3.2036 2.1789 2.8813 3.8007
Rej 0.0417 0.0418 0.0441 0.0445 0.0302 0.0562 0.0855

q = 10
Med -0.0011 -0.0005 0.0020 0.0231 0.0474 0.0617 0.0995
DecR 1.3954 1.3937 2.2599 2.1132 1.4886 2.1757 3.5166
Rej 0.0420 0.0420 0.0437 0.0465 0.0142 0.0402 0.0783

q = 15
Med -0.0055 -0.0049 -0.0116 0.0761 0.0298 0.0315 0.1004
DecR 1.1689 1.168 2.3200 1.7693 1.3057 2.0461 3.8185
Rej 0.0459 0.046 0.0471 0.0585 0.0075 0.0328 0.0806

Table 3: Linear IV model M3 : yt = α0 + β0Yt + εt, Yt = 1

{

√

c/q
n

∑q
j=1Xj,t + ηt > 0

}

. Median

bias (Med), the range between the 0.05 and 0.95 quantiles (DecR), and the empirical rejection
frequencies for t-statistics at the 5% nominal level (Rej) are reported.

outperforming other alternatives, especially when the q values are large. On the other hand,

when the weak identification is severe, HFUL has very poor finite sample properties. Notably

HFUL is heavily biased in the case of M5.

6 Application to Estimating the EIS in Consumption

In this section, WCIV and WCIVF are applied to estimate the EIS in consumption for macro

datasets from the US. The EIS in consumption is a parameter of central importance in macroe-

conomics and finance as it measures how much consumers change their expected consumption

growth rate in response to changes in the expected return on any asset. For example, King

and Rebelo (1990) demonstrates that EIS is the key parameter in a simple neoclassical model of

endogenous growth, which involves taxation. In the consumption based asset pricing models, the
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WCIV WCIVF WMD WMDF HFUL1 HFUL4 HFUL9

c = 4 q = 4
Med -0.0101 -0.0098 -0.0238 -0.0186 0.0551 0.0629 0.0719
DecR 1.1091 1.1065 1.3296 1.2916 0.9853 1.1049 1.2708
Rej 0.0582 0.0584 0.0595 0.0608 0.066 0.0887 0.1168

q = 8
Med -0.0044 -0.0041 -0.0123 -0.0029 0.0312 0.0381 0.0501
DecR 0.7490 0.7479 0.9619 0.923 0.7440 0.8893 1.1267
Rej 0.0506 0.0506 0.0548 0.057 0.0446 0.0671 0.0958

q = 16
Med -0.0036 -0.0030 -0.0099 0.0718 0.0173 0.0236 0.0482
DecR 0.5232 0.5222 0.8615 0.5967 0.5459 0.6845 1.0630
Rej 0.0473 0.0475 0.056 0.0913 0.0242 0.0484 0.0983

c = 8 q = 4
Med -0.0048 -0.0047 -0.0121 -0.0099 0.0274 0.0306 0.0301
DecR 0.7233 0.7229 0.7913 0.7831 0.7120 0.7642 0.8497
Rej 0.0511 0.0513 0.0516 0.0525 0.0608 0.0693 0.0836

q = 8
Med -0.0023 -0.0022 -0.0068 -0.0020 0.0164 0.0203 0.0237
DecR 0.5104 0.5097 0.6007 0.5920 0.5195 0.5636 0.6661
Rej 0.0495 0.0496 0.0465 0.0479 0.0439 0.0538 0.0721

q = 16
Med -0.0019 -0.0017 -0.0058 0.0364 0.0080 0.0106 0.0202
DecR 0.3611 0.3610 0.5276 0.4518 0.3752 0.4241 0.5966
Rej 0.0511 0.0511 0.0460 0.0710 0.0244 0.0361 0.0732

Table 4: Linear IV model M4 : yt = α0 + β0Yt +
√

0.5 + 0.5X2
1,tεt, Yt =

√
c/q

n0.45

∑q
j=1Xj,t + ηt.

Median bias (Med), the range between the 0.05 and 0.95 quantiles (DecR), and empirical rejection
frequencies for t-statistics at 5% nominal level (Rej) are reported.

EIS determines the optimal consumption rule, as observed in Campbell and Viceira (1999).

Therefore, EIS is a key input parameter in many macroeconomic or financial model calibra-

tions. In recent years, the EIS has been set to be quite large in many cases, reflecting the general

view among macroeconomists today that a high EIS is more consistent with the stylized facts of

macroeconomic dynamics. For example, Bansal and Yaron (2004) choose an EIS value as large

as 1.5, while Barro (2009), Ai (2010), and Colacito and Croce (2011) set the EIS value to 2.

However, to date, empirical estimation results based on macro data sets have provided limited

support to this view.2 Early literature, such as Hansen and Singleton (1983), has suggested EIS

values as high as one. However Hall (1988) argues that they do not consider time aggregation

2At the micro data level, there is some evidence of a high EIS value. For example, Attanasio and Weber
(1993) find higher values for using disaggregated cohort-level consumption data; Vissing-Jorgensen (2002), using
household data, records a higher EIS value among asset market participants. However, these results do not directly
support the large EIS values observed in macro model calibrations because they are based on aggregate macro
data.
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WCIV WCIVF WMD WMDF HFUL1 HFUL4 HFUL9

c = 4 q = 4
Med 0.0334 0.0343 0.0432 0.0518 0.1375 0.1841 0.2064
DecR 1.8895 1.7986 2.8125 1.7637 0.8177 1.1188 1.1978
Rej 0.0835 0.0836 0.1086 0.1119 0.1311 0.2218 0.2415

q = 8
Med 0.0054 0.0065 0.0262 0.0423 0.0781 0.1337 0.1765
DecR 1.0639 1.0260 2.1302 1.2105 0.7390 1.1126 1.2096
Rej 0.071 0.0711 0.1046 0.1107 0.0955 0.1938 0.2178

q = 16
Med -0.0008 0.0000 0.0393 0.1381 0.0366 0.0940 0.1624
DecR 0.6651 0.6531 2.3379 0.5004 0.6126 1.0625 1.1677
Rej 0.0656 0.0664 0.1198 0.1950 0.0723 0.1905 0.2161

c = 8 q = 4
Med 0.0050 0.0053 0.0040 0.0095 0.0687 0.1023 0.1257
DecR 0.9909 0.9761 1.2214 1.0523 0.6650 1.0186 1.1128
Rej 0.0699 0.0700 0.0831 0.0850 0.0908 0.1689 0.1872

q = 8
Med -0.0006 0.0000 -0.0005 0.0093 0.0324 0.0547 0.0887
DecR 0.6195 0.6128 0.8948 0.7338 0.5392 0.7956 1.0709
Rej 0.0619 0.062 0.0784 0.0819 0.0632 0.127 0.1671

q = 16
Med -0.0010 -0.0006 0.0013 0.0749 0.0140 0.0321 0.0799
DecR 0.4081 0.4058 0.8885 0.3698 0.4309 0.6528 0.9985
Rej 0.058 0.0587 0.0842 0.1386 0.0381 0.114 0.1557

Table 5: Linear IV modelM5 : yt = α0+β0Yt+
√

0.5 + 0.5X2
1,tεt, Yt =

√
c/q

n0.45

∑q
j=1Xj,t+exp(0.5+

0.5X1,t,)ηt. Median bias (Med), the range between the 0.05 and 0.95 quantiles (DecR), and the
empirical rejection frequencies for t-statistics at the 5% nominal level (Rej) are reported.

problem of the data appropriately, and the employed instruments are problematic. When valid

instruments are employed, Hall (1988) finds that the TSLS estimates of the EIS for the US are

unlikely to be much higher than 0.1 and may well be 0. Yogo (2004) points out that these mis-

leading results may be attributed to weak instruments. Yogo (2004) and Ascari et al. (2021)

employ weak-instrument-robust inference procedures on macro data sets, following Staiger and

Stock (1997), Kleibergen (2002), Moreira (2003) and Kleibergen (2005); however, they reach

similar conclusions as in Hall (1988). It should be noted that these estimation and inference

procedures only employ a fixed number of instruments. Therefore, it would be of great interest

to re-examine the EIS estimation with the estimation procedures in the literature on many weak

instruments.

To derive the estimable log-linearized Euler equation, we consider a basic consumption-based

asset pricing model with the Epstein-Zin utility function. Let δ be the subjective discount factor,
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WCIV WCIVF WMD WMDF HFUL1 HFUL4 HFUL9

c = 4 q = 4
Med -0.0101 -0.0099 -0.0220 -0.0177 0.0533 0.0550 0.0641
DecR 1.0618 1.0613 1.2879 1.2584 0.9502 1.0748 1.2412
Rej 0.0556 0.056 0.0597 0.0605 0.0668 0.0839 0.1093

q = 8
Med 0.0005 0.0009 -0.0039 0.0033 0.0331 0.0339 0.0380
DecR 0.7052 0.7036 0.9136 0.8756 0.7023 0.8054 1.0154
Rej 0.0541 0.0547 0.0586 0.0619 0.0455 0.0679 0.0915

q = 16
Med 0.0011 0.0016 -0.0035 0.0642 0.0168 0.0206 0.0352
DecR 0.4648 0.4646 0.7355 0.5478 0.4931 0.5847 0.8606
Rej 0.0488 0.049 0.0555 0.0875 0.0231 0.0437 0.0872

c = 8 q = 4
Med -0.0051 -0.0050 -0.0118 -0.0096 0.0247 0.0228 0.0239
DecR 0.6652 0.6651 0.7349 0.7287 0.6644 0.6928 0.7671
Rej 0.0474 0.0475 0.0495 0.0502 0.061 0.064 0.0787

q = 8
Med 0.0007 0.0008 -0.0015 0.0024 0.0155 0.0168 0.0164
DecR 0.4504 0.4502 0.5311 0.5229 0.4627 0.4816 0.5492
Rej 0.0531 0.0534 0.0495 0.0513 0.0495 0.0565 0.0696

q = 16
Med 0.0005 0.0007 -0.0014 0.0283 0.0070 0.0098 0.0135
DecR 0.2884 0.2883 0.4147 0.3678 0.3078 0.3228 0.4167
Rej 0.0503 0.0507 0.0485 0.068 0.0293 0.0349 0.0693

Table 6: Linear IV modelM6 : yt = α0+β0Yt+
√

0.5 + 0.5X2
1,tεt, Yt = exp

(√
c/q

n0.45

∑q
j=1Xj,t

)

+ηt.

Median bias (Med), the range between the 0.05 and 0.95 quantiles (DecR), and the empirical
rejection frequencies for t-statistics at the 5% nominal level (Rej) are reported.

γ be the coefficient of relative risk aversion, and θ = (1− γ) / (1− 1/ψ). Following Epstein and

Zin (1989) and Epstein and Zin (1991), the objective utility function is defined recursively by

Ut =

[

(1− δ)C
(1−γ)/θ
t + δ

(

EtU
1−γ
t+1

)1/θ
]θ/(1−γ)

, (14)

where Ct is consumption at time t; Et denotes conditional expectation E (·|Ft), where Ft is

the information set at time t. In the special case where γ = 1/ψ, (14) reduces to the familiar

time-separable power utility model with period utility function U (Ct) = C1−γ
t / (1− γ). The

representative household maximizes the objective function (14) subject to the intertemporal

budget constraint

Wt+1 = (1 +Rw,t+1) (Wt − Ct) (15)
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where Wt+1 is the household’s wealth and 1 + Rw,t+1 is the gross real return on the portfolio of

all invested wealth at t+1. Epstein and Zin (1991) show that equations (14) and (15) imply the

Euler equation of the form

Et





(

δ

(

Ct+1

Ct

)−1/ψ
)θ
(

1

1 +Rw,t+1

)1−θ
(1 +Rj,t+1)



 = 1 (16)

where 1 +Rj,t+1 is the gross real return on asset j.

Let lowercase letters denote the logarithms of the corresponding uppercase variables (e.g.,

rj,t+1 = log (1 +Rj,t+1)). By assuming that asset returns and consumption are homoskedastic

and jointly log normal conditional on Ft, the Euler equation (16) can be linearized as

Et

(

rj,t+1 − ηj −
1

ψ
△ct+1

)

= 0, (17)

where ψ is the EIS in consumption and

ηj = ηf −
1

2
V ar (rj,t+1 − Etrj,t+1) +

θ

ψ
Cov (rj,t+1 − Etrj,t+1,△ct+1 − Et△ct+1)

+ (1− θ)Cov (rj,t+1 − Etrj,t+1, rw,t+1 − Etrw,t+1) ,

where

ηf = − log δ +
θ − 1

2
V ar (rw,t+1 − Etrw,t+1)−

θ

2ψ2V ar (△ct+1 − Et△ct+1) .

If asset returns and consumption are conditionally heteroskedastic, we can still obtain a similar

linearized Euler equation; however, rj,t+1 − ηj − 1
ψ△ct+1 is now heteroskedastic; see Yogo (2004)

for a more detailed discussion.

Based on (17), Hall (1988), Campbell (2003), Yogo (2004), and Ascari et al. (2021), among

others, have used an instrumental variable regression approach to estimate EIS. Normally one

would choose a vector Xt, which is a subset of the information set. By the law of iterated

expectations, we get

E
[

rj,t+1 − ηj − 1/ψ△ct+1|Xt

]

= 0, (18)

or its reversed form

E [△ct+1 − αj − ψrj,t+1|Xt] = 0. (19)
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6.1 The US Quarterly Data in Ascari et al. (2021)

We utilize the dataset from Ascari et al. (2021) which includes quarterly data on equity markets

at an aggregate level, and macroeconomic variables from Q4 1955 to Q1 2018. For the nominal

interest rate it, this analysis employs three-month treasury bill rate; for the nominal stock market

return st, the S&P 500 return is employed. For ct, the log of real consumption of nondurables

and services is used, following Campbell and Mankiw (1989) and Yogo (2004). The inflation

rate πt is determined based on the deflator that corresponds to the consumption of nondurables

and services. Additional details regarding the data sources and transformation techniques can

be found in the supplementary appendix of Ascari et al. (2021).

As per Ascari et al. (2021), the ex-post real interest rate it − πt+1 and the ex-post real stock

return st − πt+1 are considered for the analysis. In the empirical analysis, the EIS is estimated

using the real interest rate as the asset return. 3 Xt comprises lag terms of the real interest rate,

real stock return, consumption growth and the first-difference of the log dividend-price ratio

(△dpt).4 It is worthwhile mentioning that the first-difference of the log dividend-price ratio is

considered instead of the log dividend-price ratio, due to its non-stationary nature. 5 Specifically,

to estimate (18) and (19), we use it − πt+1, st − πt+1, ∆ct, and ∆dpt from the first lag up to

the third lag. Thus they are at least lagged twice to avoid the data aggregation issue described

in Hall (1988). As a comparison, the estimates obtained using alternative estimation procedures

are also reported. For HFUL, the instruments include a constant and pairwise instruments
(

X′
t,
(

X2
t

)′
,X′

td1, ...,X
′
tdL−2

)′
, where dl ∈ {0, 1}, Pr (dl = 1) = 1/2. We consider L = 1, 2

or 6, that is, when L = 1, the instruments are (1,X′
t)
′; when L = 2, (1,X′

t,
(

X2
t

)′
)′; when

L = 6, (1,X′
t,
(

X2
t

)′
,X′

td1, ...,X
′
td4)

′. We denote these HFUL estimates as HFUL1, HFUL2, and

HFUL6, respectively. We have to utilize a smaller number of instruments to avoid singular matrix

problem in HFUL. We set C = 1 for WCIVF, WMDF and HFULs.

Table 7 presents the estimation results for 1/ψ and ψ. Notably, WCIV and WCIVF(C = 1)

estimates of the EIS (ψ) appear to be large, and statistically significant at the 10% significant

3We did not consider the stock return as the asset return, since it is harder to predict, the problem of weak
instruments is more severe , as demonstrated in previous empirical studies.

4In Yogo (2004), lag terms of the nominal interest rate, inflation rate, consumption growth, and log dividend-
price ratio are utilized, while Campbell (2003) employs lag terms of the real interest rate, real consumption growth,
and log dividend-price ratio. Additionally, Beeler and Campbell (2012) use lag terms of the real interest rate, real
stock return, real consumption growth, and log dividend-price ratio. In contrast, Ascari et al. (2021) examines lag
terms of the real consumption growth and real interest rate.

5The null hypothesis that the log price-dividend ratio is a unit root is not rejected by the Phillips-Perron test at
the 5% significant level. Therefore, the first-difference of log price-dividend ratio, instead of the log price-dividend
ratio, is employed.
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WCIV WCIVF WMD WMDF HFUL1 HFUL2 HFUL6 TSLS

lags 1

ψ 1.03 1.01 1.19 0.77 0.15 0.22 0.19 0.14
(0.62) (0.60) (0.97) (0.45) (0.14) (0.11) (0.17) (0.10)

1/ψ 0.98 0.97 0.84 0.67 4.77 3.95 4.03 0.62
(0.61) (0.61) (0.71) (0.51) (4.32) (2.05) (2.41) (0.31)

lags 1 to 2

ψ 1.15 1.14 1.27 0.90 0.21 0.23 0.19 0.17
(0.64) (0.63) (0.90) (0.49) (0.16) (0.16) (0.15) (0.09)

1/ψ 0.87 0.86 0.78 0.68 3.94 3.65 3.28 0.50
(0.50) (0.50) (0.58) (0.47) (3.00) (2.45) (1.67) (0.23)

lags 1 to 3

ψ 1.62 1.60 1.82 1.36 0.23 0.24 0.26 0.18
(0.94) (0.92) (1.16) (0.67) (0.18) (0.21) (0.27) (0.09)

1/ψ 0.62 0.61 0.55 0.52 3.67 3.45 2.98 0.46
(0.34) (0.34) (0.33) (0.31) (2.81) (2.95) (2.55) (0.22)

Table 7: Estimates of the EIS using real interest rate as the asset return. The quarterly data
range is from Q4 1955 to Q1 2018. EIS is estimated from E [△ct+1 − α− ψrt+1|Xt] = 0. The
reciprocal of the EIS is estimated from E [rt+1 − µ− 1/ψ△ct+1|Xt] = 0. Xt comprises lag terms
of the real interest rate, real stock return, consumption growth and the first-difference of the log
dividend-price ratio from the first lag up to the third lag. The values in the brackets are the
standard deviations of the corresponding estimates.

level. These findings hold true over model transformation, with the WCIV and WN IVF(C = 1)

estimates of 1/ψ align with those of ψ. Although, the WMD and WMDF(C = 1) estimates

of the EIS are comparable to those of WCIV and WCIVF(C = 1) in some cases, the WMD

estimates are not statistically significant at the 10% significant level, and the WMDF estimates

are generally smaller than the WCIV and WCIVF estimates substantially. Furthermore, the

WMD and WMDF estimates frequently differ substantially. For example, for the first IV set, the

WMD estimate of EIS is 1.19 and statistically insignificant at the 10% significant level, while the

WMDF(C = 1) estimate is 0.77, and statistically significant at the 10% significant level. The

HFUL estimates of the EIS are generally greater than the TSLS estimates, but much less than

the WCIV and WCIVF(C = 1) estimates.

6.2 The US Quarterly Data in Beeler and Campbell (2012)

To further check the robustness of the WCIV and WCIVF estimates of the EIS, an alternative

quarterly data set from Beeler and Campbell (2012) is considered. The data range is from Q2

1947 to Q4 2008. The stock market data are based on monthly CRSP NYSE/AMEX Value-

weighted Indices. The real interest rates and real stock returns are ex-ante. See the appendix
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WCIV WCIVF WMD WMDF HFUL1 HFUL2 HFUL6 TSLS

IV Set 1

1/ψ 0.49 0.49 0.54 0.43 2.82 3.51 3.39 1.62
(0.30) (0.30) (0.30) (0.22) (1.08) (1.60) (1.53) (0.40)

ψ 2.03 1.98 1.86 1.16 0.32 0.24 0.25 0.33
(1.07) (1.02) (0.99) (0.41) (0.12) (0.11) (0.11) (0.13)

IV Set 2

1/ψ 0.59 0.57 0.39 0.20 2.82 3.62 3.33 1.10
(0.50) (0.48) (0.39) (0.10) (1.16) (1.85) (1.69) (0.27)

ψ 1.69 1.60 2.58 0.40 0.32 0.23 0.25 0.32
(0.78) (0.71) (1.66) (0.11) (0.13) (0.11) (0.13) (0.13)

IV Set 3

1/ψ 0.42 0.42 0.50 0.41 2.67 3.39 3.15 1.03
(0.24) (0.23) (0.26) (0.20) (1.03) (1.58) (1.46) (0.23)

ψ 2.36 2.30 2.00 1.23 0.34 0.25 0.27 0.34
(1.33) (1.26) (1.07) (0.43) (0.13) (0.12) (0.13) (0.13)

Table 8: Estimates of the EIS using real interest rate as the asset return. The data range is from
Q2 1947 to Q4 2008. The EIS is estimated from E [△ct+1 − α− ψrt+1|Xt] = 0. The reciprocal
of EIS is estimated from E [rt+1 − µ− 1/ψ△ct+1|Xt] = 0. The first set consists of the first lag
terms of real interest rate, real stock return, and consumption growth. The second set consists
of the first lag terms of real interest rate, consumption growth, and first-difference of log price-
dividend ratio. The third set consists of the first lag terms of real interest rate, real stock return,
consumption growth, and first-difference of log price-dividend ratio. The values in the brackets
are the standard deviations of the corresponding estimates.

of Beeler and Campbell (2012) for detailed description of the data, sources, and transformation

used.

The EIS is estimated using real interest rate as the asset return. Three sets of Xt are consid-

ered. The first set consists of lag terms of real interest rate, real stock return, and consumption

growth. The second set consists of the lag terms of real interest rate, consumption growth, and

first-difference of log price-dividend ratio. The third set consists of real interest rate, real stock

return, consumption growth, and first-difference of log price-dividend ratio. We consider the first

lag terms of Xt in our analysis.

The empirical results are reported in Table 8. It is observed that the WCIV and WCIVF(C =

1) estimates of the EIS are also quite large, although the data range, data structure, and Xt are

different. Notably, for the first set, the WCIV and WCIVF(C = 1) estimates of the EIS are

approximately 2 and statistically significant at the 5% level. For the third set, the estimates are

even larger than 2. In contrast, the HFUL estimates of the EIS are quite small, even less than

the TSLS estimates in several cases.

In summary, we obtain large WCIV and WCIVF(C = 1) estimates of the EIS in consumption,
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which well exceed one, and are statistically significant from zero. Further, these findings are

robust to different sets of Xt, model transformation, and different data structures and data

ranges. These results are strikingly different from those of HFUL and lend strong support to the

practices of some model calibrations, where the EIS value is set to be significantly large.

7 Conclusion

This study proposes two novel IV estimators, namely WCIV and WCIVF, utilizing a continuum

of instruments and a unique nonintegrable weighting function in the minimum distance objective

function of IV estimation. This study demonstrates that these estimators are consistent and

asymptotically normally distributed in the face of weak instruments and heteroskedasticity of

unknown form. Extensive Monte Carlo simulations reveal that they exhibit highly favorable

finite sample properties under various model setups. We apply WCIV and WCIVF to estimate

the EIS of consumption for macro datasets of the US. Our results show the WCIV and WCIVF

estimates well exceed one and are statistically significant, which is strikingly different from the

results obtained using alternative approaches.

8 Appendix

Throughout, let C denote a generic positive constant that may be different in different uses.

∑

j,k =
∑n

j=1

∑n
k=1. Let w.p.a.1 denote with probability approaching one.

Lemma 8.1 For all X ∈ R
q

∫

Rq

1− cos 〈τ ,X〉
‖τ‖q+1 dτ = cq ‖X‖ ,

where

cq =
π(q+1)/2

Γ ((q + 1) /2)
,

in which Γ (r) =
∫∞
0 tr−1e−tdt, r 6= 0,−1,−2.... The integrals at 0 and ∞ are meant in the

principal value sense: limε→0

∫

Rq\{εB+ε−1Bc}, where B is the unit ball centered at 0 and Bc is the

complement of B, and
∫

Rq

sin (〈τ ,X〉)
‖τ‖q+1 dτ = 0.
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Proof. For any x ∈ R,

d
∫∞
0

1−cos(xs)
s2

ds

dx
=

∫ ∞

0

sin (xs)

s
ds

=
π

2
sgn (x) ,

where sgn (x) denotes the sign of x. So

∫ ∞

0

1− cos (xs)

s2
ds =

π

2
|x| . (20)

By 3.3.2.3, P586, Prudnikov et al. (1986) and applying (20), we have

∫

Rq

1− cos (〈τ ,X〉)
‖τ‖q+1 dτ =

2π(q−1)/2

Γ
(

q−1
2

)

∫ π

0

∫ ∞

0

1− cos (‖X‖ s cosu)
s2

ds sinq−2 (u) du

= ‖X‖ 2π(q+1)/2

Γ
(

q−1
2

)

∫ π

0
|cosu| sinq−2 (u) du

= ‖X‖ π
(q+1)/2

Γ
(

q+1
2

) .

∫

Rq

sin (〈τ ,X〉)
‖τ‖q+1 dτ =

2π(q−1)/2

Γ
(

q−1
2

)

∫ π

0

∫ ∞

0

sin (‖X‖ s cosu)
s2

ds sinq−2 (u) du

= ‖X‖ 2π(q−1)/2

Γ
(

q−1
2

)

∫ ∞

0

sin (s)

s2
ds

∫ π

0
cosu sinq−2 (u) du

= 0.

So the proof is complete.

Proof of Lemma 3.1 . Under Assumption 2, E ‖Xt‖2 <∞,

E ‖Yt‖2 = E

∥

∥

∥

∥

Rnf (Xt)√
n

+ ηt

∥

∥

∥

∥

2

≤ 2E

∥

∥

∥

∥

Rnf (Xt)√
n

∥

∥

∥

∥

2

+ 2E ‖ηt‖2

≤ 2

∥

∥

∥

∥

Rn√
n

∥

∥

∥

∥

2

E ‖f (Xt)‖2 + 2E ‖ηt‖2

<∞,
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and, for any β ∈Rp

E |yt|2 = E
∣

∣α0 + β′
0Yt + εt

∣

∣

2
<∞.

Note exp
(

i
〈

τ ,Xt −X+
t

〉)

= cos
(〈

τ ,Xt −X+
t

〉)

+i sin
(〈

τ ,Xt −X+
t

〉)

, then by Cauchy-Schwarz

inequality,

∫

Rq

|h (β, τ )|2ω (dτ ) =

∫

Rq

∣

∣E
[(

yt − µy − β′ (Yt − µY )
)

(exp (i 〈τ ,Xt〉)− E exp (i 〈τ ,Xt〉))
]∣

∣

2
ω (dτ )

≤
∫

Rq

E
(

yt − µy − β′ (Yt − µY )
)2
E |exp i 〈τ ,Xt〉 − E exp (i 〈τ ,Xt〉)|2ω (dτ )

≤ E
(

yt − µy − β′ (Yt − µY )
)2
E

[∫

Rq

1− cos
(〈

τ ,Xt −X+
t

〉)

ω (dτ )

]

≤ E
(

yt − µy − β′ (Yt − µY )
)2
E
∥

∥Xt −X+
t

∥

∥

<∞.

Now

|h (β, τ )|2 = E
[(

yt − µy − β′ (Yt − µY )
)

exp (i 〈τ ,Xt〉)
]

E
[(

yt − µy − β′ (Yt − µY )
)

exp (−i 〈τ ,Xt〉)
]

= E
[(

yt − µy − β′ (Yt − µY )
) (

y+t − µy − β′ (Y+
t − µY

))

exp
(

i
〈

τ ,Xt −X+
t

〉)]

= −E
[(

yt − µy − β′ (Yt − µY )
) (

y+t − µy − β′ (Y+
t − µY

)) (

1− exp
(

i
〈

τ ,Xt −X+
t

〉))]

.

Then by the Fubini’s theorem and Lemma 8.1, we obtain

∫

Rq

|h (β, τ )|2ω (dτ ) = −E







(

yt − µy − β′ (Yt − µY )
) (

y+t − µy − β′ (Y+
t − µY

))

×
∫

Rq

(

1− exp
(

i
〈

τ ,Xt −X+
t

〉))

ω (dτ )







= −E
[(

yt − µy − β′ (Yt − µY )
) (

y+t − µy − β′ (Y+
t − µY

)) ∥

∥Xt −X+
t

∥

∥

]

,

where
(

y+t ,
(

X+
t

)′)′
is an i.i.d. copy of (yt,X

′
t)
′.

The following Lemmas 8.2 to 8.6 further gives some important results regarding integrals

involving the nonintegrable weighting function, which are useful in the proof of consistency and

asymptotic normality of WCIV and WCIVF. Let

Ẑt (τ ) = Ỹt exp (i 〈τ ,Xt〉) ,

Zt (τ ) = (Yt − µY ) exp (i 〈τ ,Xt〉) ,
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where µY = E (Yt), Ỹt = Yt − µ̂Y , µ̂Y = 1
n

∑n
t=1Yt.

Lemma 8.2 Let Yt ∈ R
p, Xt ∈ R

q. If (Y′
t,X

′
t)
′ is i.i.d., and E ‖Yt‖2 < ∞, E ‖Xt‖2 < ∞.

Then
∫

Rq

1

n

n
∑

t=1

Ẑt (τ )ω (dτ )
p→
∫

Rq

E [Zt (τ )]ω (dτ ) , (21)

Proof. To prove (21), define the region D (δ) = {τ : δ ≤ ‖τ‖ ≤ 1/δ} with δ ∈ (0, 1). For any

fixed δ ∈ (0, 1), ω (τ ) is bounded on D (δ). Hence by weak law of large number (WLLN) and the

continuous mapping theorem it follows that

∫

D(δ)

1

n

n
∑

t=1

Ẑt (τ )ω (dτ )
p→
∫

D(δ)
E [Zt (τ )]ω (dτ ) .

It is obvious that
∫

D(δ)
1
n

∑n
t=1 Ẑt (τ )ω (dτ ) converges in probability to

∫

D(δ)E [Zt (τ )]ω (dτ )

when δ tends to zero.

Now it remains to show that

lim
δ→0

lim sup
n→∞

∥

∥

∥

∥

∥

∫

Rq

1

n

n
∑

t=1

Ẑt (τ )ω (dτ )−
∫

D(δ)

1

n

n
∑

t=1

Ẑt (τ )ω (dτ )

∥

∥

∥

∥

∥

= 0 in probability.

For each δ ∈ (0, 1), by triangle inequality,

∥

∥

∥

∥

∥

∫

Rq

1

n

n
∑

t=1

Ẑt (τ )ω (dτ )−
∫

D(δ)

1

n

n
∑

t=1

Ẑt (τ )ω (dτ )

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∫

‖τ‖<δ

1

n

n
∑

t=1

Ẑt (τ )ω (dτ ) +

∫

‖τ‖>1/δ

1

n

n
∑

t=1

Ẑt (τ )ω (dτ )

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

∫

‖τ‖<δ

1

n

n
∑

t=1

Ỹt [1− exp (i 〈τ ,Xt〉)]ω (dτ )

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∫

‖τ‖>1/δ

1

n

n
∑

t=1

Ỹt [1− exp (i 〈τ ,Xt〉)]ω (dτ )

∥

∥

∥

∥

∥

:= An1 +An2.

33



By triangle inequality,

An1 =

∥

∥

∥

∥

∥

1

n

n
∑

t=1

Ỹt

∫

‖τ‖<δ
[1− exp (i 〈τ ,Xt〉)]ω (dτ )

∥

∥

∥

∥

∥

≤ 1

n

n
∑

t=1

∥

∥

∥

∥

∥

Yt

∫

‖τ‖<δ
[1− exp (i 〈τ ,Xt〉)]ω (dτ )

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

1

n

n
∑

t=1

Yt
1

n

n
∑

t=1

∫

‖τ‖<δ
[1− exp (i 〈τ ,Xt〉)]ω (dτ )

∥

∥

∥

∥

∥

p→ E

∥

∥

∥

∥

∥

Yt

∫

‖τ‖<δ
[1− exp (i 〈τ ,Xt〉)]ω (dτ )

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

EYtE

∫

‖τ‖<δ
[1− exp (i 〈τ ,Xt〉)]ω (dτ )

∥

∥

∥

∥

∥

.

Since E
(∫

Rq [1− exp (i 〈τ ,Xt〉)]ω (dτ )
)

= cqE ‖Xt‖ <∞, then

lim
δ→0

E

(

∫

‖τ‖<δ
[1− exp (i 〈τ ,Xt〉)]ω (dτ )

)

= 0.

By Cauchy-Schwarz inequality,

E

∥

∥

∥

∥

∥

Yt

∫

‖τ‖<δ
[1− exp (i 〈τ ,Xt〉)]ω (dτ )

∥

∥

∥

∥

∥

≤
(

E ‖Yt‖2
)1/2



E

∥

∥

∥

∥

∥

∫

‖τ‖<δ
[1− exp (i 〈τ ,Xt〉)]ω (dτ )

∥

∥

∥

∥

∥

2




1/2

.

Similarly, E
(∫

Rq [1− exp (i 〈τ ,Xt〉)]ω (dτ )
)2

= c2qE ‖Xt‖2 <∞,

lim
δ→0

E

(

∫

‖τ‖<δ
[1− exp (i 〈τ ,Xt〉)]ω (dτ )

)2

= 0.

We have

lim
δ→0

lim sup
n→∞

An1 = 0 in probability.

Similarly, we have

lim
δ→0

lim sup
n→∞

An2 = 0 in probability.

We conclude that (21) holds.

In Lemma 8.3, the focus is on the process

Bpn (τ ) =
1√
n

n
∑

t=1

Ẑt (τ ) , τ ∈Rq.

34



It is convenient to establish the weak convergence of Bpn (τ ) in a Hilbert space. By this ap-

proach the i.i.d. conditions can be relaxed to weakly stationary time series process conveniently.

Specifically, for a fixed δ, ω (·) is integrable on D (δ), therefore, denote υ as the product measure

of ω (·) on D (δ), i.e., dυ (τ ) = ω (dτ ) on D (δ). Then we consider Bpn (τ ) as a random element

in the Hilbert space L2 (D (δ) , υ) of all square integrable q dimensional functions (with respect

to the measure υ) with the inner product

〈f ,g〉H(δ) =

∫

D(δ)
f (τ)′ gc (τ)ω (dτ ) .

L2 (D (δ) , υ) is endowed with the natural Borel σ-field induced by the norm ‖f‖H(δ) = 〈f , f〉1/2H(δ).

If Z is a L2 (D (δ) , υ)-valued random element and has a probability νZ , we say Z has mean m

and E
(

〈Z,h〉H(δ)

)

= 〈m,h〉H(δ) for any h ∈ L2 (D (δ) , υ). If E ‖Z‖2H(δ) < ∞ and Z has zero

mean, then the covariance operator of Z (or νZ),CZ (·) say, is a continuous, linear, symmetric

positive definite operator from L2 (D (δ) , υ) to L2 (D (δ) , υ), defined by

CZ (h) = E
[

〈Z,h〉H(δ) Z
]

.

An operator s on a Hilbert space is called nuclear if it can be represented as s(h) =
∑∞

j=1 lj 〈h, fj〉H(δ) fj ,

where {fj} is an orthonormal basis of the Hilbert space and {lj} is a real sequence, such that

∑∞
j=1 |lj | <∞. It is easy to show, see, e.g., Bosq (2000), that the covariance operator CZ(·) is a

nuclear operator, provided that E‖Z‖2H(δ) <∞.

Lemma 8.3 Let Yt ∈ R
p, Xt ∈ R

q. If (Y′
t,X

′
t)
′ is i.i.d., E (Yt|Xt) = µY , and E ‖Yt‖2 < ∞,

E ‖Xt‖2 <∞, then

Bpn (τ ) ⇒ Bp (τ ) , (22)

where ⇒ denotes weak convergence in L2 (D (δ) , υ), Bp (·) denotes a zero-mean complex valued

Gaussian process with a covariance structure given by

Λp (τ , ς) = E
[

YtY
′
t exp (i 〈τ − ς,Xt〉)

]

− E (Yt)E
(

Y′
t

)

E [exp (i 〈τ − ς,Xt〉)]

+
[

E
(

YtY
′
t

)

+ E (Yt)E
(

Y′
t

)]

E [exp (i 〈τ ,Xt〉)]E [exp (−i 〈ς,Xt〉)]

− E
[

YtY
′
t exp (i 〈τ ,Xt〉)

]

E [exp (−i 〈ς,Xt〉)]− E
[

YtY
′
t exp (−i 〈ς,Xt〉)

]

E [exp (i 〈τ ,Xt〉)] ,
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for τ , ς ∈ D (δ).

Proof. To prove (22), we show Bpn (τ ) is tight by Theorem 2.1 in Politis and Romano (1994).

Firstly

E
[

Ẑt (τ )
]

=
n− 1

n
E [Zt (τ )] = 0.

For a fixed δ, by Cauchy-Schwarz inequality, the fact that ‖exp (i 〈τ ,Xt〉)‖2H(δ) is bounded, and

‖a+ b‖2H(δ) ≤ 2 ‖a‖2H(δ) + 2 ‖b‖2H(δ),

E

(

∥

∥

∥Ẑn (τ )
∥

∥

∥

2

H(δ)

)

≤ E

(

∥

∥

∥Ỹt

∥

∥

∥

2

H(δ)
‖exp (i 〈τ ,Xt〉)‖2H(δ)

)

≤ CE





∥

∥

∥

∥

∥

Y− 1

n

n
∑

t=1

Yt

∥

∥

∥

∥

∥

2

H(δ)





≤ 2CE



‖Yt‖2H(δ) +

∥

∥

∥

∥

∥

1

n

n
∑

t=1

Y

∥

∥

∥

∥

∥

2

H(δ)





≤ CE ‖Yt‖2 ≤ ∞.

For any integer K > 1, by WLLN, Ẑ1 (τ ) , ..., ẐK (τ )
p→ Z1 (τ ) , ...,ZK (τ ).

lim
n→∞

E
〈

Ẑ1 (τ ) , ẐK (τ )
〉

H(δ)

= lim
n→∞

E 〈Z1 (τ )− (µ̂Y − µY ) exp (i 〈τ ,Xt〉) ,ZK (τ )− (µ̂Y − µY ) exp (i 〈τ ,XK〉)〉H(δ)

= E 〈Z1 (τ ) ,ZK (τ )〉H(δ) − lim
n→∞

E 〈Z1 (τ ) , (µ̂Y − µY ) exp (i 〈τ ,XK〉)〉H(δ)

− lim
n→∞

E 〈ZK (τ ) , (µ̂Y − µY ) exp (i 〈τ ,X1〉)〉H(δ)

+ lim
n→∞

E 〈(µ̂Y − µY ) exp (i 〈τ ,X1〉) , (µ̂Y − µY ) exp (i 〈τ ,XK〉)〉H(δ)

=

∫

D(δ)
E [Z1 (τ )]E [ZcK (τ )]′ ω (dτ )

= 0.
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Since, for example,

E 〈Z1 (τ ) , (µ̂Y − µY ) exp (−i 〈τ ,XK〉)〉H(δ)

=

∫

D(δ)
E
[

Z1 (τ )
′ (µ̂Y − µY ) exp (−i 〈τ ,XK〉)

]

ω (dτ )

=

∫

D(δ)
E

[

Z1 (τ )
′ 1
n

n
∑

t=1

(Yt − µY ) exp (−i 〈τ ,XK〉)
]

ω (dτ )

=
1

n

∫

D(δ)
E
[

‖Y1 − µY ‖2 exp (i 〈τ ,X1 −XK〉)
]

ω (dτ )

→ 0, as n→ ∞.

Therefore

lim
n→∞

n
∑

K=1

E
〈

Ẑ1 (τ ) , ẐK (τ )
〉

H(δ)
= E

(

‖Z1 (τ )‖2H(δ)

)

<∞.

Further, for any h ∈ H (δ),

σ2n,h = V ar
(

〈Bpn (τ ) ,h〉H(δ)

)

=
1

n
V ar





〈

n
∑

t=1

Zt (τ )− (µ̂Y − µY )
n
∑

t=1

exp (i 〈τ ,Xt〉) ,h
〉

H(δ)





→ V ar
(

〈Z1 (τ ) ,h〉H(δ)

)

, as n→ ∞.

Then we conclude Bpn (τ ) is tight. Further, for any integer K > 1, Bpn (τ 1) , ...,Bpn (τK)

are asymptotically normally distributed by the central limit theorem (CLT) and the Slutskey

theorem. Then the weak convergence follows. Further

E
[

Bpn (τ )B
c
pn (ς)

′] =

(

n− 1

n

)2

E
[

YtY
′
t exp (i 〈τ − ς,Xt〉)

]

+
n− 1

n
E [exp (i 〈τ − ς,Xt〉)]

(

1

n
E
(

YtY
′
t

)

− E (Yt)E
(

Y′
t

)

)

+
n− 1

n

(

E (Yt)E
(

Y′
t

)

+
n− 2

n
E
(

YtY
′
t

)

)

E [exp (i 〈τ ,Xt〉)]E [exp (−i 〈ς,Xt〉)]

−
(

n− 1

n

)2

E
[

YtY
′
t exp (i 〈τ ,Xt〉)

]

E [exp (−i 〈ς,Xt〉)]

−
(

n− 1

n

)2

E [exp (i 〈τ ,Xt〉)]E
[

YtY
′
t exp (−i 〈ς,Xt〉)

]

.
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Then we have

Λp (τ , ς) = E
[

YtY
′
t exp (i 〈τ − ς,Xt〉)

]

− E (Yt)E
(

Y′
t

)

E [exp (i 〈τ − ς,Xt〉)]

+
[

E
(

YtY
′
t

)

+ E (Yt)E
(

Y′
t

)]

E [exp (i 〈τ ,Xt〉)]E [exp (−i 〈ς,Xt〉)]

− E
[

YtY
′
t exp (i 〈τ ,Xt〉)

]

E [exp (−i 〈ς,Xt〉)]− E
[

YtY
′
t exp (−i 〈ς,Xt〉)

]

E [exp (i 〈τ ,Xt〉)]

for τ , ς ∈ D (δ).

Lemma 8.4 Let Yt ∈ R
p, Xt ∈ R

q. If (Y′
t,X

′
t)
′ is i.i.d., and E ‖Yt‖2 < ∞, E ‖Xt‖2 < ∞.

Then
∫

Rq

‖E (Zt (τ ))‖2ω (dτ ) = −E
[

(Yt − µY )
′ (
Y+
t − µY

) ∥

∥Xt −X+
t

∥

∥

]

,

∫

Rq

∥

∥

∥

∥

∥

1

n

n
∑

t=1

Ẑt (τ )

∥

∥

∥

∥

∥

2

ω (dτ ) = − 1

n2

∑

j,k

Ỹ′
jỸk ‖Xj −Xk‖ .

Further,

1

n2

∑

j,k

Ỹ′
jỸk ‖Xj −Xk‖

p→ E
[

(Yt − µY )
′ (
Y+
t − µY

) ∥

∥Xt −X+
t

∥

∥

]

. (23)

if E (Yt|Xt) = µY , then

1

n

∑

j,k

Ỹ′
jỸk ‖Xj −Xk‖ = Op (1) . (24)

Proof. The analytical forms of
∫

Rq ‖E (Zt (τ ))‖2ω (dτ ) and
∫

Rq

∥

∥

∥

1
n

∑n
t=1 Ẑt (τ )

∥

∥

∥

2
ω (dτ ) are

proved by repeatedly applying Lemma 8.1. The proof of (23) follows the proof of Theorem 3 in

Shao and Zhang (2014). To prove (24), we need to show

∫

Rq

‖Bnp (τ )‖2ω (dτ )
p→
∫

Rq

‖Bp (τ )‖2ω (dτ ) .

For a given δ, by Lemma 8.3 and the continuous mapping theorem, we have

∫

D(δ)
‖Bpn (τ )‖2ω (dτ )

p→
∫

D(δ)
‖Bp (τ )‖2ω (dτ ) .

It is obvious that
∫

D(δ) ‖Bnp (τ )‖2 ω (dτ ) converges in distribution to
∫

Rq ‖Bp (τ )‖2 ω (dτ ) when

δ tends to zero.
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For a given δ, following the proof of Theorem 4 in Shao and Zhang (2014), we have

lim
δ→0

lim sup
n→∞

E

∣

∣

∣

∣

∣

∫

‖τ‖<δ
‖Bpn (τ )‖2 ω (dτ )

∣

∣

∣

∣

∣

= 0,

lim
δ→0

lim sup
n→∞

E

∣

∣

∣

∣

∣

∫

‖τ‖>1/δ
‖Bpn (τ )‖2 ω (dτ )

∣

∣

∣

∣

∣

= 0.

Therefore

lim
δ→0

lim sup
n→∞

E

∣

∣

∣

∣

∣

∫

Rq

‖Bpn (τ )‖2 ω (dτ )−
∫

D(δ)
‖Bpn (τ )‖2 ω (dτ )

∣

∣

∣

∣

∣

= 0.

Then by Markov’s inequality,

lim
δ→0

lim sup
n→∞

∣

∣

∣

∣

∣

∫

Rq

‖Bpn (τ )‖2 ω (dτ )−
∫

D(δ)
‖Bpn (τ )‖2 ω (dτ )

∣

∣

∣

∣

∣

= 0 in probability.

Finally, by Theorem 8.6.2 of Resnick (1999), we conclude that (24) holds

Lemma 8.5 Let Yt ∈ R
p, Xt ∈ R

q. If (Y′
t,X

′
t)
′ is i.i.d., and E ‖Yt‖2 < ∞, E ‖Xt‖2 < ∞.

Then
∫

Rq

E [Zt (τ )]E [Zct (τ )]
′
ω (dτ ) = −E

[

(Yt − µY )
(

Y+
t − µY

)′ ∥
∥Xt −X+

t

∥

∥

]

,

∫

Rq

1

n2

n
∑

t=1

Ẑt (τ )

(

n
∑

t=1

Ẑct (τ )

)′

ω (dτ ) = − 1

n2

∑

j,k

ỸjỸ
′
k ‖Xj −Xk‖ .

Further,

1

n2

∑

j,k

ỸjỸ
′
k ‖Xj −Xk‖

p→ E
[

(Yt − µY )
(

Y+
t − µY

)′ ∥
∥Xt −X+

t

∥

∥

]

. (25)

If E (Yt|Xt) = µY , then

∫

Rq

1

n

n
∑

t=1

Ẑt (τ )

(

n
∑

t=1

Ẑct (τ )

)′

ω (dτ ) = Op (1) . (26)

Proof. The analytical forms are proved by repeatedly applying Lemma 8.1. The proof of (25)

is analogous to the one for proving (23) in Lemma 8.4. To prove (26), we need to show

∫

Rq

1

n

n
∑

t=1

Ẑt (τ )

(

n
∑

t=1

Ẑct (τ )

)′

ω (dτ )
p→
∫

Rq

Bp (τ )B
c
p (τ )

′
ω (dτ ) .
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Again, by Lemma 8.3 and the continuous mapping theorem, for a given δ ∈ (0, 1), we have

∫

D(δ)

1

n

n
∑

t=1

Ẑt (τ )

(

n
∑

t=1

Ẑct (τ )

)′

ω (dτ )
p→
∫

D(δ)
Bp (τ )B

c
p (τ )

′
ω (dτ ) .

When j = k, from Lemma 8.4, we have

lim
δ→0

lim sup
n→∞

E





∫

‖τ‖<δ

1

n

∣

∣

∣

∣

∣

n
∑

t=1

Ẑjt (τ )

∣

∣

∣

∣

∣

2

ω (dτ )



 = 0, for j = 1, ..., p,

lim
δ→0

lim sup
n→∞

E





∫

‖τ‖>1/δ

1

n

∣

∣

∣

∣

∣

n
∑

t=1

Ẑjt (τ )

∣

∣

∣

∣

∣

2

ω (dτ )



 = 0, for j = 1, ..., p,

where Ẑjt (τ ) is the jth element of Ẑt (τ ). For j, k = 1, ..., p, j 6= k, by Cauchy-Schwarz inequality,

E

∣

∣

∣

∣

∣

∫

‖τ‖<δ

1

n

n
∑

t=1

Ẑjt (τ )

n
∑

t=1

Ẑckt (τ )ω (dτ )

∣

∣

∣

∣

∣

≤ E











∫

‖τ‖<δ

1

n

∣

∣

∣

∣

∣

n
∑

t=1

Ẑjt (τ )

∣

∣

∣

∣

∣

2

ω (dτ )





1/2



∫

‖τ‖<δ

1

n

∣

∣

∣

∣

∣

n
∑

t=1

Ẑkt (τ )

∣

∣

∣

∣

∣

2

ω (dτ )





1/2






≤



E





∫

‖τ‖<δ

1

n

∣

∣

∣

∣

∣

n
∑

t=1

Ẑjt (τ )

∣

∣

∣

∣

∣

2

ω (dτ )









1/2 

E





∫

‖τ‖<δ

1

n

∣

∣

∣

∣

∣

n
∑

t=1

Ẑkt (τ )

∣

∣

∣

∣

∣

2

ω (dτ )









1/2

.

So, by the dominated convergence theorem,

lim
δ→0

lim sup
n→∞

E

∣

∣

∣

∣

∣

∫

‖τ‖<δ

1

n

n
∑

t=1

Ẑjt (τ )

n
∑

t=1

Ẑckt (τ )ω (dτ )

∣

∣

∣

∣

∣

= 0.

Similarly we can obtain

lim
δ→0

lim sup
n→∞

E

∣

∣

∣

∣

∣

∫

‖τ‖>1/δ

1

n

n
∑

t=1

Ẑjt (τ )

n
∑

t=1

Ẑckt (τ )ω (dτ )

∣

∣

∣

∣

∣

= 0.

Then for j, k = 1, ..., p,

lim
δ→0

lim sup
n→∞

E

∣

∣

∣

∣

∣

∫

Rq

1

n

n
∑

t=1

Ẑjt (τ )

n
∑

t=1

Ẑckt (τ )ω (dτ )−
∫

D(δ)

1

n

n
∑

t=1

Ẑjt (τ )

n
∑

t=1

Ẑckt (τ )ω (dτ )

∣

∣

∣

∣

∣

= 0.
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Then by Markov’s inequality, j, k = 1, ..., n,

lim
δ→0

lim sup
n→∞

(

∫

Rq

1

n

n
∑

t=1

Ẑjt (τ )
n
∑

t=1

Ẑckt (τ )ω (dτ )−
∫

D(δ)

1

n

n
∑

t=1

Ẑjt (τ )
n
∑

t=1

Ẑckt (τ )ω (dτ )

)

= 0

in probability. Then by the continuous mapping theorem,

lim
δ→0

lim sup
n→∞

(

∫

Rq

1

n

n
∑

t=1

Ẑt (τ )

(

n
∑

t=1

Ẑct (τ )

)′

ω (dτ )−
∫

D(δ)

1

n

n
∑

t=1

Ẑt (τ )

(

n
∑

t=1

Ẑct (τ )

)′

ω (dτ )

)

= 0

in probability. Finally, by Theorem 8.6.2 of Resnick (1999), we conclude that (26) holds.

In the following Lemma, we give similar results without proving them.

Lemma 8.6 Let Yt ∈ R
p, Xt ∈ R

q. If (Y′
t,X

′
t)
′ is i.i.d., and E ‖Yt‖2 < ∞, E ‖Xt‖2 < ∞,

E ‖f (Xt)‖2 <∞. Let Ft (τ ) = (f (Xt)− Ef (Xt)) exp (i 〈τ ,Xt〉), F̂t (τ ) = f̃ (Xt) exp (−i 〈τ ,Xt〉),

where f̃ (Xk) = f (Xk)− 1
n

∑n
j=1 f (Xj). Then

∫

Rq

E [Zt (τ )]E [Fct (τ )]
′
ω (dτ ) = −E

[

(Yt − µY )
(

f
(

X+
t

)

− Ef (Xt)
)′ ∥
∥Xt −X+

t

∥

∥

]

,

∫

Rq

1

n2

n
∑

t=1

Ẑt (τ )
n
∑

t=1

F̂ct (τ )
′
ω (dτ ) = − 1

n2

∑

j,k

Ỹj f̃ (Xk)
′ ‖Xj −Xk‖ .

Further,

1

n2

∑

j,k

Ỹj f̃ (Xk)
′ ‖Xj −Xk‖

p→ E
[

(Yt − µY )
(

f
(

X+
t

)

− Ef (Xt)
)′ ∥
∥Xt −X+

t

∥

∥

]

.

If E (Yt|Xt) = µY , then

∫

Rq

1

n

n
∑

t=1

Ẑt (τ )
n
∑

t=1

F̂ct (τ )
′
ω (dτ ) = Op (1) . (27)

The following lemma is Lemma A0 from Hansen et al. (2008).

Lemma 8.7 If Assumptions 1 is satisfied,
∥

∥

∥R′
n

(

β̂ − β0

)

/rn

∥

∥

∥

2
/

(

1 +
∥

∥

∥β̂

∥

∥

∥

2
)

p→ 0, then

∥

∥

∥
R′
n

(

β̂ − β0

)

/rn

∥

∥

∥

p→ 0.
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Lemma 8.8 Let ε̃j = εj − 1
n

∑n
t=1 εt, under Assumptions 1-3,

1

nr2n

∑

j,k

ε̃jDjkε̃k = op (1) ,

1

n

∑

j,k

R−1
n ỸjDjkỸ

′
kR

−1′
n =

1

n2

∑

j,k

f̃ (Xj)Djk f̃ (Xk)
′ + op (1) .

Proof. Note E (εt|Xt) = 0, Djk = −‖Xj −Xk‖, then by Lemma 8.4,

1

n

∑

j,k

ε̃jDjkε̃k = Op (1) .

Note rn = min1≤j≤q rj,n → ∞, so we have

1

nr2n

∑

j,k

ε̃jDjkε̃k =
1

r2n
Op (1) = op (1) .

1

n

∑

j,k

R−1
n ỸjDjkỸ

′
jR

−1′
n =

1

n

∑

j,k

(

f̃ (Xj)√
n

+R−1
n η̃j

)

Djk

(

f̃ (Xk)
′

√
n

+ η̃′
kR

−1′
n

)

=
1

n2

∑

j,k

f̃ (Xj)Djk f̃ (Xk)
′ +

1

n

∑

j,k

f̃ (Xj)Djkη̃
′
k

R−1′
n√
n

+
R−1
n√
n

1

n

∑

j,k

η̃jDjk f̃ (Xk)
′ +R−1

n

1

n

∑

j,k

η̃jDjkη̃
′
kR

−1′
n .

As E (ηt|Xt) = 0, then 1
n

∑

j,k f̃ (Xj)Djkη̃
′
k = Op (1),

1
n

∑

j,k η̃jDjk f̃ (Xk)
′ = Op (1) by Lemma

8.6; 1
n

∑

j,k η̃jDjkη̃
′
k = Op (1) by Lemma 8.5. Further R−1

n = op (1) by Assumption 2. So

1

n

∑

j,k

R−1
n ỸjDjkỸ

′
kR

−1′
n =

1

n2

∑

j,k

f̃ (Xj)Djk f̃ (Xk)
′ +Op (1) op (1) +Op (1) op (1) +Op (1) op (1)

=
1

n2

∑

j,k

f̃ (Xj)Djk f̃ (Xk)
′ + op (1) .

Lemma 8.9 If Assumptions 1-3 are satisfied, then for β̂ = β̂WCIV , R
′
n

(

β̂ − β0

)

/rn
p→ 0.

Proof. Following the same arguments as in the proof of Lemma A3 in Hausman et al. (2012),
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w.p.a.1 for all β, we have

C ≤ 1

n

(

ỹ − Ỹβ
)′ (

ỹ − Ỹβ
)

≤ C
(

1 + ‖β‖2
)

.

On the other hand,

1

nr2n

(

ỹ − Ỹβ
)′

D
(

ỹ − Ỹβ
)

=
1

nr2n

∑

j,k

(

ỹj − Ỹ′
jβ
)′
Djk

(

ỹk − Ỹ′
kβ
)

=
1

nr2n

∑

j,k

(

Ỹ′
j (β0 − β) + ε̃j

)′
Djk

(

Ỹ′
k (β0 − β) + ε̃k

)

=
1

nr2n

(

R′
n (β0 − β)

)′





∑

j,k

R−1
n ỸjDjkỸ

′
kR

−1′
n



R′
n (β0 − β)

+
1

nr2n

∑

j,k

ε̃jDjkε̃k + (β0 − β)′
2

nr2n

∑

j,k

ỸjDjkε̃k.

Note

1

nr2n

∑

j,k

ỸkDjkε̃j =
1

nr2n

∑

j,k

f̃ (Xj)√
n

Djkε̃k +
1

nr2n

∑

j,k

η̃jDjkε̃k.

Since E
(

(εt,η
′)′ |Xt

)

= 0, by Lemma 8.5, 1
n

∑

j,k η̃jDjkε̃k = Op (1), by Lemma 8.6, 1
n

∑

j,k f̃ (Xj)Djkε̃k =

Op (1). Then we have

1

nr2n

∑

j,k

ỸkDjkε̃j = op (1) .

By Lemma 8.8, 1
nr2

n

∑

j,k ε̃jDjkε̃k = op (1). By Assumption 2, w.p.a.1, 1
n2

∑

j,k f̃ (Xj)Djk f̃ (Xk)
′ ≥

CIp, we have, w.p.a.1,

1

nr2n

(

ỹ − Ỹβ
)′

D
(

ỹ − Ỹβ
)

=
1

r2n

(

R′
n (β0 − β)

)′





1

n

∑

j,k

R−1
n ỸjDjkỸ

′
kR

−1′
n



R′
n (β0 − β) + op (1)

≥ C
∥

∥R′
n (β − β0) /rn

∥

∥

2
.

Let

Q̂ (β) =
1

r2n

(

ỹ − Ỹβ
)′

D
(

ỹ − Ỹβ
)

(

ỹ − Ỹβ
)′ (

ỹ − Ỹβ
) .

Then by Lemma 8.8, and 1
n

∑n
j=1 ε̃

2
j = Op (1), we have

∣

∣

∣Q̂ (β0)
∣

∣

∣ =

∣

∣

∣

∣

∣

1
r2
n
n

∑

j,k ε̃jDjkε̃k
1
n

∑n
j=1 ε̃

2
j

∣

∣

∣

∣

∣

p→ 0. (28)
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Since β̂WCIV = argminβ Q̂ (β), we have Q̂
(

β̂WCIV

)

≤ Q̂ (β0). Therefore w.p.a.1

0 ≤

∥

∥

∥
R′
n

(

β̂WCIV − β0

)

/rn

∥

∥

∥

2

1 +
∥

∥

∥β̂WCIV

∥

∥

∥

2 ≤ CQ̂
(

β̂WCIV

)

≤ CQ̂ (β0)
p→ 0,

implying
∥

∥

∥R′
n

(

β̂WCIV − β0

)

/rn

∥

∥

∥

2

1 +
∥

∥

∥
β̂WCIV

∥

∥

∥

2

p→ 0.

Then by Lemma 8.7, we arrive at the conclusion.

Lemma 8.10 If Assumptions 1-3 are satisfied, R′
n

(

β̂ − β0

)

/rn
p→ 0, then

(

ỹ − Ỹβ̂
)′

D
(

ỹ − Ỹβ̂
)

(

ỹ − Ỹβ̂
)′ (

ỹ − Ỹβ̂
) = op

(

r2n
)

.

Proof. Firstly, by WLLN, we have

1

n

(

ỹ − Ỹβ̂
)′ (

ỹ − Ỹβ̂
)

= Op (1) .

1

nr2n

(

ỹ − Ỹβ̂
)′

D
(

ỹ − Ỹβ̂
)

=
1

nr2n

∑

j,k

(

ỹj − Ỹ′
jβ̂
)′
Djk

(

ỹk − Ỹ′
kβ̂
)

=
(

R′
n

(

β0 − β̂
)

/rn

)′




1

n

∑

j,k

R−1
n ỸjDjkỸ

′
kR

−1′
n



R′
n

(

β0 − β̂
)

/rn

+
1

nr2n

∑

j,k

ε̃jDjkε̃k +
(

rnR
′−1
n

)

R′
n

(

β0 − β̂
)

/rn
2

nr2n

∑

j,k

ỸjDjkε̃k.

By Lemma 8.8, R′
n

(

β̂ − β0

)

/rn
p→ 0,

∥

∥R−1
n

∥

∥ = O
(

r−1
n

)

, and 1
nr2

n

∑

j,k ỸkDjkε̃j = op (1), we

have

1

n

(

ỹ − Ỹβ̂
)′

D
(

ỹ − Ỹβ̂
)

= op
(

r2n
)

.

Then by the continuous mapping theorem, the result follows.

Proof of Theorem 4.1. Note firstly when R′
n

(

β̂ − β0

)

/rn
p→ 0, then by ϑmin

(

RnR
′
n/r

2
n

)

≥
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ϑmin

(

R̃nR̃
′
n

)

> 0, we have

∥

∥

∥
R′
n

(

β̂ − β0

)

/rn

∥

∥

∥
≥ ϑmin

(

RnR
′
n/r

2
n

)

∥

∥

∥
β̂ − β0

∥

∥

∥
≥ C

∥

∥

∥
β̂ − β0

∥

∥

∥
,

implying β̂
p→ β0. Therefore, for WCIV, this follows from Lemma 8.9. For WCIVF, note that

firstly

λ̂WCIV =

(

ỹ − Ỹβ̂WCIV

)′
D
(

ỹ − Ỹβ̂WCIV

)

(

ỹ − Ỹβ̂WCIV

)′ (
ỹ − Ỹβ̂WCIV

) = op
(

r2n
)

.

Then

λ̂WCIV F =
[

λ̂WCIV −
(

1− λ̂WCIV

)

C/n
]

/
[

1−
(

1− λ̂WCIV

)

C/n
]

= op
(

r2n
)

.

R′
n

(

β̂WCIV F − β0

)

/rn

= R′
n

[

Ỹ′
(

D− λ̂WCIV F In

)

Ỹ
]−1 [

Ỹ′
(

D− λ̂WCIV F In

)

ỹ
]

/rn

=



R−1
n





1

n

∑

j,k

ỸjDjkỸ
′
k −

1

n
λ̂WCIV F Ỹ

′Ỹ



R−1′
n





−1

×R−1
n





1

n

∑

j,k

ỸjDjkε̃k −
1

n
λ̂WCIV F Ỹ

′ε̃



 /rn.

Since Ỹ′Ỹ =Op (n), Ỹ
′ε̃ =Op (n),

∥

∥R−1
n

∥

∥ = O
(

r−1
n

)

, therefore

R−1
n

n
λ̂WCIV F Ỹ

′ỸR−1′
n = O

(

r−1
n

)

O (1/n) op
(

r2n
)

Op (n)O
(

r−1
n

)

= op (1) ,

R−1
n

1

n
λ̂WCIV F Ỹ

′ε̃/rn = O
(

r−1
n

)

O (1/n) op
(

r2n
)

Op (n)O
(

r−1
n

)

= op (1) .

R−1
n

1

n

∑

j,k

ỸjDjkε̃k/rn =
1

n

∑

j,k

f̃ (Xj)√
n

Djkε̃k/rn +R−1
n

1

n

∑

j,k

η̃jDjkε̃k/rn

= op (1) + op (1) = op (1) .
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Further, by Lemma 8.8, we have

R′
n

(

β̂WCIV F − β0

)

/rn =





1

n2

∑

j,k

f̃ (Xj)Djk f̃ (Xk)
′ + op (1)





−1

op (1) = op (1) .

Therefore, β̂WCIV F
p→ β0. Finally, by the continuous mapping theorem, α̂WCIV

p→ α0, α̂WCIV F
p→

α0.

Proof of Theorem 4.2. Note, for β̂ = β̂WCIV or β̂WCIV F , λ̂ = λ̂WCIV or λ̂WCIV F

β̂ =
[

Ỹ′
(

D− λ̂In

)

Ỹ
]−1 [

Ỹ′
(

D− λ̂In

)

ỹ
]

.

Then

R′
n

(

β̂ − β0

)

= R′
n

[

Ỹ′
(

D− λ̂In

)

Ỹ
]−1 [

Ỹ′
(

D− λ̂In

)

ε̃
]

=



R−1
n





1

n

∑

j,k

ỸjDjkỸ
′
k −

1

n
λ̂Ỹ′Ỹ



R−1′
n





−1

×R−1
n





1

n

∑

j,k

ỸjDjkε̃k −
1

n
λ̂Ỹ′ε̃



 .

R−1
n

n
λ̂Ỹ′ỸR

−1′
n = O

(

r−1
n

)

O (1/n) op
(

r2n
)

Op (n)O
(

r−1
n

)

= op (1) .

R−1
n

1√
n
λ̂Ỹ′ε̃ = R−1

n

1

n
λ̂
∑

j

Ỹj ε̃j

=
1

n
λ̂

1√
n

∑

j

f̃ (Xj) ε̃k +
1

n
λ̂R−1

n

∑

j

η̃j ε̃j

= O (1/n) op
(

r2n
)

Op (1) +O
(

1/
√
n
)

op
(

r2n
)

O
(

r−1
n

)

Op (1)

= op (1) ,

Since by CLT, 1√
n

∑

j η̃j ε̃j = Op (1),
1√
n

∑

j f̃ (Xj) ε̃k = Op (1), and rj,n =
√
n or rj,n/

√
n → 0
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by Assumption 2. Therefore

R′
n

(

β̂ − β0

)

=



R−1
n





1

n

∑

j,k

ỸjDjkỸ
′
k



R−1′
n





−1

R−1
n

1

n

∑

j,k

ỸjDjkε̃k + op (1) .

By Lemma 8.8, we have





√
nR−1

n





1

n2

∑

j,k

ỸjDjkỸ
′
k



R−1′
n

√
n



R′
n

(

β̂ − β0

)

=
√
nR−1

n

1

n
√
n

∑

j,k

ỸjDjkε̃k + op (1) .

:= An + op (1) .

Now

An =
√
nR−1

n

∫

Rq

1

n
√
n

n
∑

j=1

n
∑

k=1

Ỹj exp (i 〈τ ,Xj〉) ε̃k exp (−i 〈τ ,Xk〉)ω (dτ )

=
√
nR−1

n

∫

Rq

1

n

n
∑

j=1

Ỹj exp (i 〈τ ,Xj〉)
1√
n

n
∑

k=1

ε̃k exp (−i 〈τ ,Xk〉)ω (dτ )

=
√
nR−1

n

∫

Rq

1

n

n
∑

j=1

Ỹj exp (i 〈τ ,Xj〉)B1n (τ )
c
ω (dτ ) ,

where

B1n (τ ) =
1√
n

n
∑

k=1

ε̃k exp (i 〈τ ,Xk〉) .

By Lemma 8.4

B1n (τ ) ⇒ B1 (τ ) ,

where B1 (·) denotes a zero-mean complex valued Gaussian process with a covariance structure

given by

Λ1 (τ , ς) = E
[

ε2t exp (i 〈τ − ς,Xt〉)
]

+ E
(

ε2t
)

E [exp (i 〈τ ,Xt〉)]E [exp (−i 〈ς,Xt〉)]

− E
[

ε2t exp (i 〈τ ,Xt〉)
]

E [exp (−i 〈ς,Xt〉)]− E
[

ε2t exp (−i 〈ς,Xt〉)
]

E [exp (i 〈τ ,Xt〉)] ,

for τ , ς ∈ D (δ).
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For a fixed δ, by the Slutsky theorem and the continuous mapping theorem,

∫

D(δ)

1

n

n
∑

j=1

Ẑt (τ )B1n (τ )
c
ω (dτ )

p→
∫

D(δ)
E [Zt (τ )]B1 (τ )

c
ω (dτ ) .

Then in the same spirit of proving 8.5, by Cauchy-Schwarz inequality

E

∣

∣

∣

∣

∣

∫

‖τ‖<δ

1

n

n
∑

t=1

Ẑt (τ )B1n (τ )
c
ω (dτ )

∣

∣

∣

∣

∣

≤ E











∫

‖τ‖<δ

1

n2

∣

∣

∣

∣

∣

n
∑

t=1

Ẑt (τ )

∣

∣

∣

∣

∣

2

ω (dτ )





1/2
(

∫

‖τ‖<δ
|B1n (τ )|2ω (dτ )

)1/2






≤



E





∫

‖τ‖<δ

1

n2

∣

∣

∣

∣

∣

n
∑

t=1

Ẑt (τ )

∣

∣

∣

∣

∣

2

ω (dτ )









1/2
(

E

(

∫

‖τ‖<δ
|B1n (τ )|2ω (dτ )

))1/2

.

Then by the dominated convergence theorem,

lim
δ→0

lim sup
n→∞

E

∣

∣

∣

∣

∣

∫

‖τ‖<δ

1

n

n
∑

t=1

Ẑt (τ )B1n (τ )
c
ω (dτ )

∣

∣

∣

∣

∣

= 0.

Similarly we can obtain

lim
δ→0

lim sup
n→∞

E

∣

∣

∣

∣

∣

∫

‖τ‖>1/δ

1

n

n
∑

t=1

Ẑt (τ )B1n (τ )
c
ω (dτ )

∣

∣

∣

∣

∣

= 0.

So we conclude that

Rn√
n
An

d→
∫

Rq

E [Zt (τ )]B1 (τ )
c
ω (dτ ) .

Given the fact that the integrated weighted Gaussian process follows a normal distribution, so

we have

Rn√
n
V ar (An)

R′
n√
n

p→ Ω (θ0)

where

Ω (θ0) =

∫

Rq

∫

Rq

E [Zt (τ )]E [Zt (−ς)]′ Λ1 (τ , ς)
c
ω (dτ )ω (dς)

= S1 (θ0) + S2 (θ0)− S3 (θ0)− S3 (θ0)
′ .
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To derive the analytical form of Ω (θ0), we plug Λ1 (τ , ς)
c into Ω (θ0):

Ω (θ0) =

∫

Rq

∫

Rq

E [Zt (τ )]E [Zt (−ς)]′

×











E
[

ε2t exp (−i 〈τ − ς,Xt〉)
]

+ E
(

ε2t
)

E [exp (−i 〈τ ,Xt〉)]E [exp (i 〈ς,Xt〉)]

−E
[

ε2t exp (−i 〈τ ,Xt〉)
]

E [exp (i 〈ς,Xt〉)]− E
[

ε2t exp (i 〈ς,Xt〉)
]

E [exp (−i 〈τ ,Xt〉)]











ω (dτ )ω (dς) ,

By the Fubini’s theorem and Lemma 8.1,

S1 (θ0) =

∫

Rq

∫

Rq

E







(Yt − µY ) exp (i 〈τ ,Xt〉)
(

Y+
t − µY

)

exp
(

i
〈

ς,X+
t

〉)

×ε++2
t exp

(

−i
〈

τ − ς,X++
t

〉)






ω (dτ )ω (dς)

=

∫

Rq

∫

Rq

E







ε++2
t (Yt − µY ) exp

(

i
〈

τ ,Xt −X++
t

〉)

×
(

Y+
t − µY

)′
exp

(

i
〈

ς,X++
t −X+

t

〉)






ω (dτ )ω (dς)

=

∫

Rq

∫

Rq

E







ε++2
t (Yt − µY )

(

1− exp
(

i
〈

τ ,Xt −X++
t

〉))

×
(

Y+
t − µY

)′ (
1− exp

(

i
〈

ς,X++
t −X+

t

〉))






ω (dτ )ω (dς)

= E







∫

Rq ε
++2
t (Yt − µY )

[

1− exp
(

i
〈

τ ,Xt −X++
t

〉)]

ω (dτ )

×
∫

Rq

(

Y+
t − µY

)′ [
1− exp

(

i
〈

ς,X++
t −X+

t

〉)]

ω (dς)







= E
[

ε++2
t (Yt − µY )

(

Y+
t − µY

)′ ∥
∥Xt −X++

t

∥

∥

∥

∥X+
t −X++

t

∥

∥

]

.

S2 (θ0) =

∫

Rq

∫

Rq

E [(Yt − µY ) exp (i 〈τ ,Xt〉)]E [(Yt − µY ) exp (−i 〈ς,Xt〉)]′

× E
(

ε2t
)

E [exp (−i 〈τ ,Xt〉)]E [exp (i 〈ς,Xt〉)]ω (dτ )ω (dς)

= E
(

ε2t
)

∫

Rq

E
[

(Yt − µY )
(

1− exp
(

i
〈

τ ,Xt −X+
t

〉))]

ω (dτ )

×
∫

Rq

E
[

(Yt − µY )
′ (1− exp

(

i
〈

ς,X+
t −Xt

〉))]

ω (dς)

= E
(

ε2t
)

E
(

(Yt − µY )
∥

∥Xt −X+
t

∥

∥

)

E
(

(Yt − µY )
′ ∥
∥Xt −X+

t

∥

∥

)

.
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S3 (θ0) =

∫

Rq

∫

Rq

E [(Yt − µY ) exp (i 〈τ ,Xt〉)]E [(Yt − µY ) exp (−i 〈ς,Xt〉)]′

× E
[

ε2t exp (−i 〈τ ,Xt〉)
]

E [exp (i 〈ς,Xt〉)]ω (dτ )ω (dς)

=

∫

Rq

E
[

ε+2
t (Yt − µY )

(

1− exp
(

i
〈

τ ,Xt −X+
t

〉))]

ω (dτ )

×
∫

Rq

E
[

(Yt − µY )
′ (1− exp

(

i
〈

ς,X+
t −Xt

〉))]

ω (dς)

= E
(

ε+2
t (Yt − µY )

∥

∥Xt −X+
t

∥

∥

)

E
(

(Yt − µY )
′ ∥
∥Xt −X+

t

∥

∥

)

.

The last term in Ω (θ0) :

∫

Rq

∫

Rq

E [(Yt − µY ) exp (i 〈τ ,Xt〉)]E [(Yt − µY ) exp (−i 〈ς,Xt〉)]′

× E
[

ε2t exp (i 〈ς,Xt〉)
]

E [exp (−i 〈τ ,Xt〉)]ω (dτ )ω (dς)

=

∫

Rq

E
[

(Yt − µY )
(

1− exp
(

i
〈

τ ,Xt −X+
t

〉))]

ω (dτ )

×
∫

Rq

E
[

ε+2
t (Yt − µY )

′ (1− exp
(

i
〈

ς,X+
t −Xt

〉))]

ω (dς)

= S3 (θ0)
′ .

Finally by the Slutsky theorem, we arrive at the conclusion.

Proof of Theorem 4.3. For θ̂ = θ̂WCIV or θ̂WCIV F , λ̂=λ̂WCIV or λ̂WCIV F ,

Ŝ1

(

θ̂, λ̂
)

=
1

n3

n
∑

j=1

n
∑

k=1

n
∑

l=1

ỸjỸ
′
kεl

(

θ̂
)2
D̃jl

(

λ̂
)

D̃kl

(

λ̂
)

=
1

n3

n
∑

j=1

n
∑

k=1

n
∑

l=1

ỸjỸ
′
kεl

(

θ̂
)2
DjlDkl

− 1

n3
λ̂

n
∑

j=1

n
∑

k=1

n
∑

l=1

ỸjỸ
′
kεl

(

θ̂
)2
DjlIkl

− 1

n3
λ̂

n
∑

j=1

n
∑

k=1

n
∑

l=1

ỸjỸ
′
kεl

(

θ̂
)2
DklIjl

+
1

n3
λ̂
2

n
∑

j=1

n
∑

k=1

n
∑

l=1

ỸjỸ
′
kεl

(

θ̂
)2
IklIjl

:= A1n −A2n −A3n +A4n.
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where Ikl denotes the (k, l)th element of In.

A2n =
1

n3
λ̂

n
∑

l=1

n
∑

j=1

ỸjỸ
′
lεl

(

θ̂
)2
Djl

=
λ̂

n

1

n2

n
∑

l=1

n
∑

j=1

ỸjỸ
′
lεl

(

θ̂
)2
Djl

= op (1)Op (1)

= op (1) ,

since by Lemma 8.10, λ̂ = op
(

r2n
)

, and

1

n2

n
∑

l=1

n
∑

j=1

ỸjỸ
′
lεl

(

θ̂
)2
Djl =

1

n2

n
∑

l=1

n
∑

j=1

ỸjỸ
′
jε

2
lDjl + op (1)

= E
[

(Yt − µY )
(

Y+
t − µY

)′
ε+2
t

∥

∥Xt −X+
t

∥

∥

]

+ op (1)

= Op (1) .

By similar arguments, we have A3n = op (1).

A4n =
1

n3
λ̂
2

n
∑

j=1

n
∑

k=1

n
∑

l=1

ỸjỸ
′
kεl

(

θ̂
)2
IklIjl

=
1

n3
λ̂
2

n
∑

j=1

ỸjỸ
′
jεj

(

θ̂
)2

= op (1) .

Now

A1n =
1

n

n
∑

l=1



εl

(

θ̂
)2 1

n

n
∑

j=1

ỸjDjl
1

n

n
∑

k=1

Ỹ′
kDkl



 .

We have

1

n

n
∑

j=1

ỸjDjl
p→
∫

Rq

Ej [(Yj − µY ) exp (i 〈τ ,Xj −Xl〉)]ω (dτ ) = −Ej [(Yj − µY ) ‖Xj −Xl‖] ,

1

n

n
∑

k=1

Ỹ′
kDkl

p→
∫

Rq

Ek
[

(Yk − µY )
′ exp (i 〈ς,Xk −Xl〉)

]

ω (dς) = −Ek
[

(Yk − µY )
′ ‖Xk −Xl‖

]

,

where Ej denotes the expectation in terms of (Yj ,Xj). So by the continuous mapping theorem,
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we conclude that Ŝ1

(

θ̂, λ̂
)

p→ S1 (θ0). Analogously we can show

Ŝ2

(

θ̂, λ̂
)

p→ S2 (θ0) ,

Ŝ3

(

θ̂, λ̂
)

p→ S3 (θ0) .

Then by the continuous mapping theorem,

Ω̂
(

θ̂, λ̂
)

p→ Ω (θ0) .

Υ̂
(

λ̂
)

=
1

n2

∑

j,k

ỸjDjkỸ
′
k −

1

n2
λ̂Ỹ′Ỹ.

Since 1
n2

∑

j,k ỸjDjkỸ
′
k = Υ + op (1) by Lemma 8.5, 1

n2 λ̂Ỹ
′Ỹ =O

(

1/n2
)

op
(

r2n
)

O (n) = op (1),

we have

Υ̂
(

λ̂
)

p→ Υ.

By the Slutsky theorem

(√
nR−1′

n Ω̂
(

θ̂, λ̂
)√

nR−1
n

)−1/2 (√
nR−1′

n Υ̂
(

λ̂
)

R−1
n

√
n
)

R′
n

(

β̂ − β0

)

d→ N (0, Ip) .

In other words,

R−1
n

(√
nR−1′

n Υ̂
(

λ̂
)

R−1
n

√
n
)−1√

nR−1′
n Ω̂

(

θ̂, λ̂
)√

nR−1
n

(√
nR−1′

n Υ̂
(

λ̂
)

R−1
n

√
n
)−1

R−1′
n

is a consistent variance estimator for
(

β̂ − β0

)

. On the other hand, by the first-order Taylor

expansion, under H0,

g
(

β̂
)

= g (β0) +G
(

β̄
)

(

β̂ − β0

)

= G
(

β̄
)

(

β̂ − β0

)

,

where β̄ is vector between β̂ and β0, β̄
p→ β0. Then

G
(

β̂
)

R−1
n

(√
nR−1′

n Υ̂
(

λ̂
)

R−1
n

√
n
)−1

×
√
nR−1′

n Ω̂
(

θ̂, λ̂
)√

nR−1
n

(√
nR−1′

n Υ̂
(

λ̂
)

R−1
n

√
n
)−1

R−1′
n G

(

β̂
)′

=
1

n
G
(

β̂
)

Υ̂
(

λ̂
)−1

Ω̂
(

θ̂, λ̂
)

Υ̂
(

λ̂
)−1

G
(

β̂
)′
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is a consistent variance estimator of g
(

β̂
)

. Therefore

Wn

(

θ̂
)

d→ χ2
m.

References

Ackerberg, D. A. and Devereux, P. J. (2009). Improved jive estimators for overidentified lin-

ear models with and without heteroskedasticity. The Review of Economics and Statistics,

91(2):351–362.

Ai, H. (2010). Information quality and long-run risk: Asset pricing implications. Journal of

Finance, 65(4):1333–1367.

Anatolyev, S. (2019). Many instruments and/or regressors: A friendly guide. Journal of Economic

Surveys, 33(2):689–726.

Anderson, T., Kunitomo, N., and Matsushita, Y. (2010). On the asymptotic optimality of the

liml estimator with possibly many instruments. Journal of Econometrics, 157(2):191–204.

Angrist, J. D., Imbens, G. W., and Krueger, A. (1999). Jackknife instrumental variables estima-

tion. Journal of Applied Econometrics, 14(1):57–67.

Antoine, B. and Lavergne, P. (2014). Conditional moment models under semi-strong identifica-

tion. Journal of Econometrics, 182(1):59–69.

Ascari, G., Magnusson, L. M., and Mavroeidis, S. (2021). Empirical evidence on the euler equation

for consumption in the us. Journal of Monetary Economics, 117:129–152.

Attanasio, O. P. and Weber, G. (1993). Consumption growth, the interest rate and aggregation.

The Review of Economic Studies, 60(3):631–649.

Bansal, R. and Yaron, A. (2004). Risks for the long run: A potential resolution of asset pricing

puzzles. Journal of Finance, 59(4):1481–1509.

Barro, R. J. (2009). Rare disasters, asset prices, and welfare costs. The American Economic

Review, 99(1):243–264.

53



Beeler, J. and Campbell, J. Y. (2012). The long-run risks model and aggregate asset prices: An

empirical assessment. Critical Finance Review, 1(1):141–182.

Bekker, P. A. (1994). Alternative approximations to the distributions of instrumental variable

estimators. Econometrica, 62(3):657–681.

Bekker, P. A. and van der Ploeg, J. (2005). Instrumental variable estimation based on grouped

data. Statistica Neerlandica, 59(3):239–267.

Bierens, H. J. (1990). A consistent conditional moment test of functional form. Econometrica,

58(6):1443–1455.

Bierens, H. J. and Ploberger, W. (1997). Asymptotic theory of integrated conditional moment

tests. Econometrica, 65(5):1129–1151.

Blomquist, S. and Dahlberg, M. (1999). Small sample properties of liml and jackknife iv estima-

tors: Experiments with weak instruments. Journal of Applied Econometrics, 14(1):69–88.

Bosq, D. (2000). Linear Processes in Function Spaces: Theory and Applications. Springer-Verlag,

New York.

Bound, J., Jaeger, D. A., and Baker, R. M. (1995). Problems with instrumental variables estima-

tion when the correlation between the instruments and the endogenous explanatory variable is

weak. Journal of the American Statistical Association, 90(430):443–450.

Campbell, J. Y. (2003). Consumption-based asset pricing. Handbook of The Economics of

Finance, pages 803–887.

Campbell, J. Y. and Mankiw, N. G. (1989). Consumption, income, and interest rates: Reinter-

preting the time series evidence. Nber Macroeconomics Annual, 4:185–216.

Campbell, J. Y. and Viceira, L. M. (1999). Consumption and portfolio decisions when expected

returns are time varying. Quarterly Journal of Economics, 114(2):433–495.

Carrasco, M. and Florens, J.-P. (2000). Generalization of gmm to a continuum of moment

conditions. Econometric Theory, 16(6):797–834.

Carrasco, M. and Tchuente, G. (2015). Regularized liml for many instruments. Journal of

Econometrics, 186(2):427–442.

54



Chao, J. C. and Swanson, N. R. (2005). Consistent estimation with a large number of weak

instruments. Econometrica, 73(5):1673–1692.

Colacito, R. and Croce, M. M. (2011). Risks for the long run and the real exchange rate. Journal

of Political Economy, 119(1):153–181.

Davis, R., Matsui, M., Mikosch, T. V., and Wan, P. (2018). Applications of distance correlation

to time series. Bernoulli, 24:3087–3116.

Domı́nguez, M. A. and Lobato, I. N. (2004). Consistent estimation of models defined by condi-

tional moment restrictions. Econometrica, 72(5):1601–1615.

Donald, S. G. and Newey, W. K. (2001). Choosing the number of instruments. Econometrica,

69(5):1161–1191.

Epstein, L. G. and Zin, S. E. (1989). Substitution, risk aversion, and the temporal behavior of

consumption and asset returns: A theoretical framework. Econometrica, 57(4):937–969.

Epstein, L. G. and Zin, S. E. (1991). Substitution, risk aversion, and the temporal behavior of

consumption and asset returns: An empirical analysis. Journal of Political Economy, 99(2):263–

286.

Escanciano, J. C. (2018). A simple and robust estimator for linear regression models with strictly

exogenous instruments. Econometrics Journal, 21(1):36–54.

Fuller, W. A. (1977). Some properties of a modification of the limited information estimator.

Econometrica, 45(4):939–953.

Hahn, J. (2002). Optimal inference with many instruments. Econometric Theory, 18(1):140–168.

Hahn, J., Hausman, J., and Kuersteiner, G. (2004). Estimation with weak instruments: Accuracy

of higher-order bias and mse approximations. Econometrics Journal, 7(1):272–306.

Hall, R. E. (1988). Intertemporal substitution in consumption. Journal of Political Economy,

96(2):339–357.

Hansen, C., Hausman, J., and Newey, W. K. (2008). Estimation with many instrumental vari-

ables. Journal of Business & Economic Statistics, 26(4):398–422.

55



Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators.

Econometrica, 50(4):1029–1054.

Hansen, L. P. and Singleton, K. J. (1983). Stochastic consumption, risk aversion, and the temporal

behavior of asset returns. Journal of Political Economy, 91(2):249–265.

Hausman, J. A., Newey, W. K., Woutersen, T., Chao, J. C., and Swanson, N. R. (2012). In-

strumental variable estimation with heteroskedasticity and many instruments. Quantitative

Economics, 3(2):211–255.

Hsu, S.-H. and Kuan, C.-M. (2011). Estimation of conditional moment restrictions without

assuming parameter identifiability in the implied unconditional moments. Journal of Econo-

metrics, 165(1):87–99.

King, R. G. and Rebelo, S. (1990). Public policy and economic growth: Developing neoclassical

implications. Journal of Political Economy, 98(5):126–150.

Kleibergen, F. (2002). Pivotal statistics for testing structural parameters in instrumental variables

regression. Econometrica, 70(5):1781–1803.

Kleibergen, F. (2005). Testing parameters in gmm without assuming that they are identified.

Econometrica, 73(4):1103–1123.

Kunitomo, N. (2012). An optimal modification of the liml estimation for many instruments and

persistent heteroscedasticity. Annals of the Institute of Statistical Mathematics, 64(5):881–910.

Moreira, M. J. (2003). A conditional likelihood ratio test for structural models. Econometrica,

71(4):1027–1048.

Morimune, K. (1983). Approximate distributions of k-class estimators when the degree of overi-

dentifiability is large compared with the sample size. Econometrica, 51(3):821–841.

Nelson, C. R. and Startz, R. (1990). Some further results on the exact small sample properties

of the instrumental variable estimator. Econometrica, 58(4):967–976.

Newey, W. K. and Windmeijer, F. (2009). Generalized method of moments with many weak

moment conditions. Econometrica, 77(3):687–719.

56



Phillips, G. D. A. and Hale, C. (1977). The bias of instrumental variable estimators of simulta-

neous equation systems. International Economic Review, 18(1):219–228.

Politis, D. N. and Romano, J. P. (1994). Limit theorems for weakly dependent hilbert space valued

random variables with application to the stationary bootstrap. Statistica Sinica, 4(2):461–476.

Prudnikov, A. P., Brychkov, Y. A., and Marichev, O. I. (1986). Integrals and series. Gordon and

Breach, New York.

Resnick, S. (1999). A Probability Path. Birkhäuser, Boston, MA.
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