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Abstract

This study proposes new instrumental variable (IV) estimators for linear models uti-

lizing a continuum of instruments. The effectiveness of the new estimation method is

attributed to the unique weighting function employed in the minimum distance objective

functions. The proposed estimators enjoy analytical formulas and are nuisance-parameter-

free, avoiding the choice of an arbitrary number of moments or bandwidth in previous

literature. They are robust to weak instruments and heteroskedasticity of unknown form.

Moreover, they are robust to the high dimensionality of included and excluded exogenous

variables. Further, inference drawn from these estimators is also straightforward. Com-

prehensive Monte Carlo simulations confirm that the proposed estimators exhibit excellent

finite-sample properties and outperform alternative estimators over a wide range of cases.

The new estimation procedure is then applied to gauge the elasticity of intertemporal sub-

stitution (EIS) in consumption, a parameter of central importance in both macroeconomics
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and finance. For quarterly data of the U.S. from Q4 1955 to Q1 2018, the EIS estimates

obtained through our approach exceed one and are statistically significant. These find-

ings persist across model transformations, distinct sets of IVs, various data structures, and

different data ranges.
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Keywords: Endogeneity; Non-integrable weighting function; Weak identification; High-
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1 Introduction

A substantial body of the econometric literature has been dedicated to instrumental variable

(IV) methods designed to address the issue of endogeneity within linear models. However, the

effectiveness of these methods is compromised by the weak instruments problem, which occurs

when the strength of instrumental relevance is inadequate. The widely used two-stage least

squares (2SLS) method is particularly susceptible to this issue. According to Staiger and Stock

(1997), the 2SLS and limited information maximum likelihood (LIML) estimators are inconsis-

tent and converge instead to non-standard distributions in a n−1/2 local-to-zero parametrization

of the first-stage regression, where n represents the sample size.

While the assumption that the number of instruments is fixed underpins the conclusions of

Staiger and Stock (1997), Chao and Swanson (2005) revealed that employing numerous weak

instruments can enhance the estimation accuracy of the LIML and bias-corrected two-stage least

square (B2SLS) estimators. However, as pointed out by Bekker and van der Ploeg (2005) and

Hausman et al. (2012), the consistency of the LIML and Fuller (1977) (FULL) estimators could

falter in the presence of heteroskedasticity of unknown form and weak instruments. To address

this issue, Hausman et al. (2012) proposed a heteroskedasticity-robust version of the FULL

(HFUL) estimator, which is based on a jackknife version of the LIML estimator, referred to as

HLIM. They demonstrated that HFUL outperforms alternative estimators, such as the jackknife

IV estimators (JIVE) developed by Phillips and Hale (1977), Blomquist and Dahlberg (1999),

Angrist et al. (1999), and Ackerberg and Devereux (2009). It is worth mentioning that the

existing studies on many weak instruments originate from a large body of literature on many

instruments, such as Morimune (1983) and Bekker (1994). See also the comprehensive survey of

Anatolyev (2019).

However, in practical applications, determining an appropriate number of instruments for

the standard many weak IV estimators poses an exceedingly formidable challenge. In particular,

within the context of linear reduced-form setups, the asymptotic properties of these estimators

critically hinge upon the intricate interplay between the number of weak instruments and the

so-called concentration parameter, a measure of IV strength typically unknown in real-world sce-
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narios. Regrettably, the reduced form specification itself often remains elusive in most instances.

Consequently, these estimators necessitate that the linear combination of an increasing number

of instruments approximates the reduced form sufficiently well as the sample size approaches

infinity. As such, established guidelines for determining the optimal number of weak instru-

ments are conspicuously absent in the literature. The Monte Carlo simulation results presented

in this work demonstrate the discernible sensitivity in the finite-sample properties of HFUL to

variations in the number of instruments.

We introduce two IV estimators that effectively utilize a full continuum of instruments,

offering the distinct advantage of being free from user-chosen parameters. Notably, the proposed

estimators maintain analytical formulas and possess a natural jackknife structure, resembling

HLIM and HFUL. We designate the HLIM-like estimator as WCIV, as its objective function

involves a weighted continuum of IVs. The Fuller-like variant of WCIV is labeled as WCIVF.

We establish the consistency and asymptotic normality of WCIV and WCIVF in the presence

of weak instruments and heteroskedasticity of unknown form. Inference derived from these

estimators is also straightforward. Extensive Monte Carlo simulations substantiate that WCIV

andWCIVF consistently outperform HFUL and other competitive estimators across a wide range

of scenarios. Subsequently, we employ WCIV and WCIVF to estimate the EIS in consumption,

using macroeconomic datasets from the U.S. For the quarterly data ranging from Q4 1955 to Q1

2018, the WCIV and WCIVF estimates of the EIS are significantly above one and statistically

different from zero. These findings hold over model transformations, distinct sets of IVs, various

data structures, and different data ranges.

This study contributes in two primary ways. Firstly, it provides an enhanced methodol-

ogy for estimating linear models characterized by the presence of (many) weak instruments and

heteroskedasticity of unknown form. In this context, the challenge of selecting an appropriate

number of IVs for the standard many weak IV estimators proves to be exceptionally daunting.

The uniqueness of our approach lies in its utilization of a novel non-integrable weighting function

in the minimum distance objective functions. This weighting function enjoys several attractive

features which have important implications for estimation efficiency and robustness. One of the

outstanding features is that its moment weights within a neighborhood of the origin tend to
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infinity. This is extremely important in terms of estimation efficiency, as the sample moments

generated from the continuum of IVs are most informative within this vicinity. We theoretically

demonstrate that WCIV is only slightly less efficient than 2SLS under some classical regular-

ity conditions. Moreover, this weighting function is an increasing function of the dimension of

included and excluded exogenous variables, indicating a “bless of dimensionality”. We rigor-

ously show that our approach can always identify the parameters as the dimension of exogenous

variables goes to infinity. This feature is also important because, in the presence of weak in-

struments, it is advantageous to incorporate more excluded exogenous variables to augment the

IV relevance, and incorporate more included exogenous variables to safeguard against model

misspecification or to approximate unobservable factors. In addition, through this weighting

function, the minimum distance objective functions and, consequently, WCIV and WCIVF esti-

mators enjoy analytical forms; therefore, they are easily computable. Lastly, under this weighting

function, the objective functions enjoy a jackknife representation, which ensures that WCIV and

WCIVF are robust to heteroskedasticity of unknown form. To the best of our knowledge, no

previous weighting function has demonstrated all the above properties simultaneously.

Secondly, the WCIV and WCIVF estimates of the EIS in consumption offer a promising

resolution to a persistent discrepancy observed between the EIS values in various model cali-

brations and the estimates from macroeconomic datasets. Many theoretical model calibrations

necessitate significantly large EIS values to produce results that align with the stylized facts of

macroeconomic dynamics. However, the majority of the previous empirical studies, such as Hall

(1988), Campbell (2003), Yogo (2004) and Ascari et al. (2021), consistently report relatively

small EIS values. We argue that the linear reduced forms assumed by these studies may be

debatable. Existing empirical evidence suggests that linear serial dependence is not significantly

present in asset returns and consumption growth at macro level. Therefore, these EIS estimates

may be severely biased.

A continuum of instruments (moments) has been utilized in consistent specification tests

for models defined by conditional moment restrictions; see Bierens (1982), Bierens (1990) and

Bierens and Ploberger (1997), among others. Likewise, a continuum of moments has been

utilized in estimation procedures for models defined by conditional moment restrictions, such as
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Domı́nguez and Lobato (2004) and Hsu and Kuan (2011). These studies mainly focus on the

consistent parameter estimation of nonlinear models under minimal global identifying conditions.

For linear models, Escanciano (2018) and Antoine and Lavergne (2014) utilize a continuum of

moments akin to the one adopted in this study. However their minimum distance objective

functions employ integrable weighing functions, and their IV estimators generally exhibit inferior

or comparable performance to HFUL, as observed in Antoine and Lavergne (2014), and fall short

of the performance achieved by WCIV and WCIVF, as demonstrated in this study. In particular,

we illustrate that their approach fails to identify parameters when the dimension of exogenous

variables goes to infinity. In contrast, Carrasco and Florens (2000) have introduced an optimal

estimation framework involving a continuum of moments, extending the generalized method of

moments (GMM) introduced by Hansen (1982). In the pursuit of estimation efficiency, their

minimum distance objective function employs a random weighting function, which is analogous

to the optimal weighting matrix in GMM. This approach depends on a regularization of the

optimal covariance operator to address an ill-posed estimation problem which we avoid.

The remainder of the paper is organized as follows. Section 2 introduces the model setup

and the new IV estimators. We provide simple analytical formulas for WCIV and WCIVF,

and a valid Wald test statistic for parametric inference. Section 3 introduces the non-integrable

weighting function and the minimum distance objective functions. Section 4 establishes the

asymptotic theory of our proposed IV estimators. Section 6 conducts a comprehensive Monte

Carlo simulation study. Section 7 presents the application of estimating EIS in consumption.

Section 8 concludes. The proofs are presented in the Appendix.

Throughout the paper, the imaginary unit is i =
√
−1. For a complex-valued function f (·),

its complex conjugate is denoted by f c (·) and |f (·)|2 = f (·) f c (·). The scalar product of vectors

τ and ς in a Euclidean space is denoted by ⟨τ , ς⟩. The Euclidean norm of X = (X1, ..., Xq) in

Cq is ∥X∥, where ∥X∥2 =
∑q

j=1XjX
c
j . Variables X+ and X++ are independent copies of X,

that is, X+, X++, and X are independent and identically distributed (i.i.d.). ϑmin (A) denotes

the smallest eigenvalue of a symmetric matrix A. Throughout, let C denote a generic positive

constant that may be different in different uses.
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2 Model Setup, A Continuum of IVs and New IV Esti-

mators

The model we focus on is defined as follows:

yt = α + β′Yt + εt, t = 1, ..., n,

where Yt is a p× 1 vector of regressors. The model under the true parameter is

yt = α0 + β′
0Yt + ε0t, t = 1, ..., n.

Potentially, Yt is correlated with ε0t. The IV approach posits the existence of a q×1 dimensional

vector of exogenous variables Xt (excluding a constant), q ≥ p, such that, almost surely (a.s.)

E (ε0t|Xt) = 0. (1)

In this setup, Yt contains the included exogenous variables. Correspondingly, Xt contains these

variables in addition to the excluded exogenous variables. The instrumental exogeneity condition

(1) is a conditional moment restriction that is frequently encountered in macroeconomic and

financial econometric models. Examples of such models include log-linearized Euler equations

in asset pricing models, dynamic panel data models, and new Keynesian Phillips curves, among

others.

With the exogeneity condition being satisfied, the formal identification of the parameter

β0 hinges upon the conditional expectation E (Yt|Xt). In this context, consider two distinct

parameter (α1,β
′
1)

′
and (α2,β

′
2)

′
values; they are observationally equivalent if and only if

E (yt − α1 − β′
1Yt|Xt) = E (yt − α2 − β′

2Yt|Xt) ,

or

(α1 − α2) + (β1 − β2)
′E (Yt|Xt) = 0.

It is evident that the identification strength of β0 is directly contingent on the nature of

E (Yt|Xt), while α0 is always strongly identified. When E (Yt|Xt) flattens to zero as the sample
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size increases, as indicated by Assumption 1 in Section 4, the IV estimate of β0 may suffer from

the weak identification problem.

This study employs a continuum of instruments defined as:

exp (i ⟨τ ,Xt⟩) , for all τ ∈ Rq,

and the continuum of unconditional moment restrictions based on it has the form

E
{[
yt − µy − β′

0 (Yt − µY )
]
exp (i ⟨τ ,Xt⟩)

}
= 0, for all τ ∈ Rq, (2)

where µy = E (yt) and µY = E (Yt). It is noteworthy that the parameter α0 is eliminated.

Clearly, there exists an equivalence between (1) and (2) following Stinchcombe and White (1998).

While we employ a full continuum of instruments, our proposed estimators, WCIV and

WCIVF, enjoy convenient analytical formulas. To elucidate these estimators, letY = [Y1, ...,Yn]
′,

y = [y1, ..., yn]
′, Ȳ = 1

n

∑n
t=1Yt, ȳ = 1

n

∑n
t=1 yt. Define

Ỹ =
[
Y1 − Ȳ, ...,Yn − Ȳ

]′
and

ỹ = [y1 − ȳ, ..., yn − ȳ]′ .

Let D be a square matrix of size n, with Djk representing the (j, k)th element, defined as

Djk = −∥Xj −Xk∥ , j, k = 1, ..., n.

The WCIV estimator is given as

β̂WCIV =
[
Ỹ′
(
D− λ̂WCIV In

)
Ỹ
]−1

Ỹ′
(
D− λ̂WCIV In

)
ỹ (3)

α̂WCIV = ȳ − β̂
′
WCIV Ȳ, (4)

where In is an identity matrix of size n, and λ̂WCIV is the smallest eigenvalue of
(
Y̌′Y̌

)−1
Y̌DY̌with

Y̌ =
[
ỹ, Ỹ

]
. The WCIVF estimator aligns with the WCIV estimator (3), but replaces λ̂WCIV

by [
λ̂WCIV −

(
1− λ̂WCIV

)
C/n

]
/
[
1−

(
1− λ̂WCIV

)
C/n

]
.
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Clearly, WCIV and WCIVF resemble HLIM and HFUL, respectively, as Djj = 0 for j =

1, ..., n. It is worth recalling that conventional k-class IV estimators take the form α̂

β̂

 =
[
Y∗′

(
P− λ̂In

)
Y∗
]−1

Y∗′
(
P− λ̂In

)
y,

where Y∗ = [ι,Y], with ι representing a vector of ones, and P is a matrix that depends on an

n × m matrix Z of instrumental variable observations with rank (Z) = m ≥ p + 1. 2SLS

corresponds to P = Z (Z′Z)−1 Z′, with λ̂ = 0; JIVE corresponds to P = Z (Z′Z)−1 Z′ −

diag
(
Z (Z′Z)−1 Z′) and λ̂ = 0; LIML corresponds to P = Z (Z′Z)−1 Z′ and λ̂ that equals

to the smallest eigenvalue of
(
Y̌∗′Y̌∗)−1

Y̌∗PY̌
∗
with Y̌∗ = [y,Y∗]; HLIM corresponds to P =

Z (Z′Z)−1 Z′−diag
(
Z (Z′Z)−1 Z′) and λ̂ that equals to the smallest eigenvalue of

(
Y̌∗′Y̌∗)−1

Y̌∗′PY̌
∗
.

Finally, HFUL employs

λ̂HFUL =
[
λ̂HLIM −

(
1− λ̂HLIM

)
C/n

]
/
[
1−

(
1− λ̂HLIM

)
C/n

]
in HLIM.

Moreover, the valid Wald test statistic for parameter inference is easily computable. Consider

testing the parametric restriction of the form

H0 : g (β0) = 0, (5)

where g (·) is a continuously differentiable function from Rp on Rm with m ≤ p. To describe

the Wald statistic, let θ =(α,β′)
′
, εt (θ) = yt − α − β′Yt, Ỹt = Yt − Ȳ, D̃ (λ) = D− λIn and

D̃jk (λ) denote the (j, k)th element of D̃ (λ). Define

Ω̂1 (θ, λ) =
1

n3

n∑
j=1

n∑
k=1

n∑
l=1

ỸjỸ
′
kεl (θ)

2 D̃jl (λ) D̃kl (λ)

Ω̂2 (θ, λ) =
1

n5

n∑
l=1

εl (θ)
2

(
n∑
j=1

n∑
k=1

ỸjD̃jk (λ)

)(
n∑
j=1

n∑
k=1

Ỹ′
jD̃jk (λ)

)

Ω̂3 (θ, λ) =
1

n4

(
n∑
j=1

n∑
k=1

εk (θ)
2 ỸjD̃jk (λ)

)(
n∑
j=1

n∑
k=1

Ỹ′
jD̃jk (λ)

)
,
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further

Ω̂ (θ, λ) = Ω̂1 (θ, λ) + Ω̂2 (θ, λ)− Ω̂3 (θ, λ)− Ω̂′
3 (θ, λ) ,

and

Υ̂ (λ) =
1

n2
Ỹ′D̃ (λ) Ỹ.

For
(
θ̂,λ̂
)
=
(
θ̂WCIV , λ̂WCIV

)
or
(
θ̂WCIV F , λ̂WCIV F

)
, the Wald test statistic is constructed as

Wn

(
θ̂,λ̂
)
= n · g

(
β̂
)′(

G
(
β̂
)
Υ̂
(
λ̂
)−1

Ω̂
(
θ̂,λ̂
)
Υ̂
(
λ̂
)−1

G
(
β̂
)′)−1

g
(
β̂
)
, (6)

where G (β) = ∂g (β) /∂β′. The inclusion of λ̂ in these estimators follows a similar methodol-

ogy as employed by Hausman et al. (2012) and is anticipated to yield enhanced finite-sample

properties.

3 Minimum Distance Objective Functions and Non-integrable

Weighting Function

In the previous section, we have introduced the WNIV and WNIVF estimators, which are formu-

lated from the continuum of moments (2). In this section, we introduce their minimum distance

objective functions based on a unique non-integrable weighting function. Denote

h (β, τ ) = E
[(
yt − µy − β′ (Yt − µY )

)
exp (i ⟨τ ,Xt⟩)

]
= E [(εt − E (εt)) exp (i ⟨τ ,Xt⟩)]

and its sample analog

hn (β, τ ) =
1

n

n∑
t=1

(
ỹt − β′Ỹt

)
exp (i ⟨τ ,Xt⟩) ,

where ỹt = yt − ȳ. An IV estimator can be attained by minimizing the sample analog of the

following distance measure: ∫
Rq

|h (β, τ )|2W (dτ ) ,

where W (·) is a positive weighting function for which the integrals mentioned above exist.
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Undoubtedly, the function W (·) plays a pivotal role in the pursuit of estimation efficiency of

the IV estimator, functioning in a manner akin to the weighting matrix in the GMM objective

function outlined by Hansen (1982). As such, higher weighting values should be allocated to

more informative sample moments in the minimum distance objective function. It can be shown,

under some regularity conditions,

E
(∣∣√nhn (β0, τ )

∣∣2)→ E
[
ε20t
(
1 + |E (exp (i ⟨τ ,Xt⟩))|2 − 2 cos

(〈
τ ,Xt −X+

t

〉))]
.

Clearly, as ∥τ∥ → 0, E
(
|
√
nhn (β0, τ )|

2
)
→ 0. Hence, weighting values as high as possible in

a neighborhood of the origin are extremely preferable. To this end, we adopt a non-integrable

weighting function, such that

W (τ ) =
(q − 1)!!

(2π)q/2 ∥τ∥q+1
, (7)

where q!! is the double factorial,

q!! =


q · (q − 2) ...5 · 3 · 1 q > 0 odd

q · (q − 2) ...6 · 4 · 2 q > 0 even

1 q = −1, 0.

One outstanding feature of (7) is that its values tend to infinity as ∥τ∥ → 0, being substantially

different from the standard normal density function employed in Escanciano (2018) and Antoine

and Lavergne (2014). Figure 1 illustrates this fact for a standard normal density function, and

(7) with q = 1.

Another important feature of (7) is that it is an increasing function of q for fixed τ . Note

that, by applying an approximation to (q − 1)!!, when q > 1, we have

W (τ ) ≈ c
√
e

∥τ∥

(
q − 1

2πe ∥τ∥2

)q/2
,

where c =
√
π when q−1 is even, and c =

√
2 when q−1 is odd. Therefore, for a fixed value ∥τ∥

in a neighborhood of the origin, values of W (τ ) increase as q increases, indicating a “bless of

dimensionality” in terms of estimation efficiency. In contrast, a q-dimensional standard normal

density function is a decreasing function of q, for given ∥τ∥. Notably, its value equals (2π)−q/2
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Figure 1: Standard normal density function (dashed curve) vs. 1/(πτ 2) (solid curve)

at the origin, being the maximum, and shrinks to zero when q increases.

The non-integrable weighting function was first introduced by Székely et al. (2007) in the

statistics literature. Studies involving this weighting function include Székely and Rizzo (2009),

Székely and Rizzo (2014), Shao and Zhang (2014), Davis et al. (2018), Zhang et al. (2018), Yao

et al. (2018), and Wang (2024) in a testing framework. In the subsequent discussion, we write∫
Rq

(q − 1)!! |h (β, τ )|2

(2π)q/2 ∥τ∥q+1
dτ =

∫
Rq

|h (β, τ )|2ω (dτ ) ,

where ω (dτ ) = (q−1)!!

(2π)q/2∥τ∥q+1dτ for notational simplicity.

The third feature associated with the non-integrable weighting function is that
∫
Rq |h (β, τ )|2ω (dτ )

enjoys a convenient analytical form, as demonstrated by Lemma 3.1.

Lemma 3.1 When E (ε2t ) <∞, E ∥Xt∥2 <∞,∫
Rq

|h (β, τ )|2ω (dτ ) = −E
[
(εt − E (εt))

(
ε+t − E (εt)

) ∥∥Xt −X+
t

∥∥] , (8)
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where
(
ε+t ,
(
X+
t

)′)′
is an i.i.d. copy of (εt,X

′
t)

′.

Proof. See the Appendix.

Beneath the specialties of the non-integrable weighting function (7) lies a fundamental prop-

erty regarding parameter identification, as demonstrated in the following proposition:

Proposition 3.1 When E (ε20t) <∞, E ∥Xt∥2 <∞, for q → ∞,

E (ε0t|Xt) = 0 a.s.

if and only if

E
[
ε0tε

+
0t

∥∥Xt −X+
t

∥∥] = 0 and E (ε0t) = 0.

where
(
ε+0t,
(
X+
t

)′)′
is an i.i.d. copy of (ε0t,X

′
t)

′.

Proof. See the Appendix.

This proposition indicates that β0 is always identifiable by
∫
Rq |h (β0, τ )|

2ω (dτ ) = 0, even

as q → ∞, implying the high-dimensional robustness of WCIV and WCIVF.

It is also worthwhile mentioning that it is conceivable to introduce a random weighting func-

tion following Carrasco and Florens (2000). However, this approach becomes extremely chal-

lenging under weak instruments, heteroskedasticity of unknown form and high-dimensionality of

exogenous variables, as it requires a regularization of the weighting function which introduces

a nuisance parameter and proves intricate to implement in practical applications. In contrast,

our approach employs a nonrandom weighting function in the distance measure, effectively cir-

cumventing the challenging issues of determining an appropriate number of instruments or a

nuisance parameter.

While it is feasible to derive a new IV estimator by minimizing the sample analog of (8),

Monte Carlo simulations have revealed that this estimator can be significantly biased in the

presence of weak instruments and high-dimensionality of Xt. To address this issue and improve

estimation accuracy under such circumstances, the WCIV objective function is constructed like
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a LIML objective function such that:

β0 = argmin
β

∫
Rq |h (β, τ )|2ω (dτ )

E
[(
yt − µy − β′ (Yt − µY )

)2] , (9)

α0 = µy − β′
0µY . (10)

Subsequently, the WCIV estimator is defined as:

β̂WCIV=argmin
β

(
ỹ − Ỹβ

)′
D
(
ỹ − Ỹβ

)
(
ỹ − Ỹβ

)′ (
ỹ − Ỹβ

) , (11)

α̂WCIV = ȳ − β̂
′
WCIV Ȳ. (12)

The derivation of the WCIV estimator formula (3) is straightforward and analogous to the

derivation for HLIM. Moreover, WCIV remains invariant to normalization, similar to HLIM.

Further, in order to guard against the potential moment problem of WCIV, we propose the

WCIVF estimator, following the approach presented in Fuller (1977), Hahn et al. (2004), and

Hausman et al. (2012).

3.1 Comparison with Antoine and Lavergne (2014)

It is worth mentioning that the continuum of moments E [(yt − θ′
0Y

∗
t ) exp (i ⟨τ ,Xt⟩)] = 0, for

all τ ∈ Rq, is also employed in Antoine and Lavergne (2014). Using a standard normal density

function in the objective function, their minimum distance (MD) estimator is calculated as

θ̂MD=argmin
θ

(y −Y∗θ)′K (y −Y∗θ) ,

where K is a n× n matrix, such that Kjk = exp
(
−∥Xj −Xk∥2 /2

)
for j ̸= k, and Kjj = 0 for

j, k = 1, ..., n. Note that exp
(
−∥Xj −Xk∥2 /2

)
= 1 ̸= 0, when j = k. Therefore the diagonal

elements of K need to be set to zero to form a jackknife representation.1 Their weighted MD

(WMD) estimator is

θ̂WMD=argmin
θ

(y −Y∗θ)′K (y −Y∗θ)

(y −Y∗θ)′ (y −Y∗θ)
.

1The MD estimator, without setting zero values for the diagonal elements ofK, corresponds to the IV estimator
proposed by Escanciano (2018).
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Correspondingly, we have

θ̂MD= [Y∗′KY∗]
−1

Y∗′Ky,

θ̂WMD =
[
Y∗′

(
K− λ̂WMDIn

)
Y∗
]−1

Y∗′
(
K− λ̂WMDIn

)
y, (13)

where λ̂WMD is the minimum value of the objective function, which can be explicitly computed

as the smallest eigenvalue of
(
Y̌∗′Y̌∗)−1

Y̌∗′KY̌
∗
with Y̌∗ = [y,Y∗]. The Fuller-style variant of

WMD (WMDF) is obtained directly by replacing λ̂WMD in the WMD estimator (13) with

[
λ̂WMD −

(
1− λ̂WMD

)
C/n

]
/
[
1−

(
1− λ̂WMD

)
C/n

]
.

It may appear that both WMD and WCIV (WMDF and WCIVF) share many similarities,

but they are constructed on distinct estimation frameworks. In particular, WMD and WMDF

are not robust to the high-dimensionality of Xt. To see this point, note that the minimum

distance objective functions of WMD and WMDF are based on the population moment

E
[
(yt − θ′Y∗

t )
(
y+t − θ′Y∗+

t

)
exp

(
−
∥∥Xt −X+

t

∥∥2 /2)] .
By Cauchy-Schwarz inequality, it is easy to obtain∣∣∣E [(yt − θ′Y∗

t )
(
y+t − θ′Y∗+

t

)
exp

(
−
∥∥Xt −X+

t

∥∥2 /2)]∣∣∣
≤ E

(
(yt − θ′Y∗

t )
2
) [
E
(
exp

(
−
∥∥Xt −X+

t

∥∥2))]1/2
≤ C (θ)

[
E
(
exp

(
−
∥∥Xt −X+

t

∥∥2))]1/2 ,
because under some regularity conditions, E

(
(yt − θ′Y∗

t )
2
)

is finite for each θ. As q → ∞,

E
(
exp

(
−
∥∥Xt −X+

t

∥∥2))→ 0. To further understand this, assuming the components of Xt =

(X1t, ..., Xqt) are i.i.d., then

E
(
exp

(
−
∥∥Xt −X+

t

∥∥2)) =
[
E
(
exp

(
−
(
X1t −X+

1t

)2))]q
.

Since 0 < E
(
exp

(
−
(
X1t −X+

1t

)2))
< 1, as q → ∞, E

(
exp

(
−
∥∥Xt −X+

t

∥∥2)) → 0 expo-

nentially fast. This result holds for any θ, implying θ0 will not be identified when q → ∞. In

other words, strikingly different from WCIV and WCIVF, WMD and WMDF are not robust to

the high-dimensionality of Xt. The Monte Carlo simulation results reported in the Appendix
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illustrate that the finite-sample properties of WMD and WMDF deteriorate severely in the case

that the elements of Xt are i.i.d. even when q is moderate, while WCIV and WCIVF maintain

execllent finite-sample properties in all the cases.

4 Asymptotic Theory

To derive the asymptotic theory of new estimators, we introduce the following assumptions.

Assumption 1

Yt =
Rnf (Xt)√

n
+ ηt,

where Rn = R̃diag (r1,n, ..., rq,n) such that R̃ is a q × q nonsingular matrix, for each j, rj,n =

√
n or rj,n/

√
n → 0, rn = min1≤j≤q rj,n → ∞, and f : Rq → Rp is a measurable function.

1
n2

∑
j,k f̃ (Xj)Djk f̃ (Xk)

′ is finite and positive definite, where f̃ (Xt) = f (Xt) − 1
n

∑n
j=1 f (Xj),

for n sufficiently large. ϑmin

(∑n
t=1 f (Xt) f (Xt)

′ /n
)
≥ 1/C for n sufficiently large.

Assumption 2
{
(ε0t,X

′
t,η

′
t)

′} is i.i.d., such that E (ε0t|Xt) = 0, E (ηt|Xt) = 0. Further,

E
(
∥Xt∥2

)
< C, suptE (ε20t|Xt) < C, suptE

(
∥ηt∥

2 |Xt

)
< C, V ar

(
(ε0t,η

′
t)

′ |Xt

)
= diag (Φ∗

t , 0),

and ϑmin (
∑n

t=1Φ
∗
t/n) ≥ 1/C for n sufficiently large.

Assumption 1 is comparable to Assumption 2 in Hausman et al. (2012), allowing linear

combinations of β to have different degrees of identification. It is noted that the rates of decay

of the reduced form to zero are slower than 1/
√
n, which has been labeled as nearly-weak

identification or semi-strong identification by previous studies. Here we adopt the “(many)

weak instruments” terminology, following Hansen et al. (2008), Newey and Windmeijer (2009),

and Hausman et al. (2012). Our framework accommodates IV regressions involving included

exogenous variables, see Hausman et al. (2012) for more details. Moreover, it is worthwhile

mentioning that f (Xt) is an unknown function that we do not need to estimate.

Assumption 2 imposes some independence conditions and may be extended to weakly depen-

dent time series processes. Further, it requires bounded second conditional moments of distur-

bances and uniform nonsingularity of the variance of the reduced form disturbances, which are

comparable to those under Assumption 3 in Hausman et al. (2012).
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Theorem 4.1 establishes the consistency for WCIV and WCIVF.

Theorem 4.1 Under Assumptions 1-2, for β̂ = β̂WCIV or β̂WCIV F , α̂ = α̂WCIV or α̂WCIV F ,

R′
n

(
β̂ − β0

)
/rn

p→ 0,

β̂
p→ β0, α̂

p→ α0.

Proof. See the Appendix.

To discuss the asymptotic normality, an additional assumption is required. Define

V (θ) = V1 (θ) +V2 (θ)−V3 (θ)−V3 (θ)
′ ,

where

V1 (θ) = E
(
(yt − α− β′Yt)

2 (
f
(
X+
t

)
− µf

) (
f
(
X++
t

)
− µf

)′ ∥∥Xt −X+
t

∥∥∥∥Xt −X++
t

∥∥)
V2 (θ) = E

[
(yt − α− β′Yt)

2
]
E
(
(f (Xt)− µf )

∥∥Xt −X+
t

∥∥)E ((f (Xt)− µf )
′ ∥∥Xt −X+

t

∥∥)
V3 (θ) = E

(
(yt − α− β′Yt)

2 (
f
(
X+
t

)
− µf

) ∥∥Xt −X+
t

∥∥)E ((f (Xt)− µf )
′ ∥∥Xt −X+

t

∥∥)
with µf = Ef (Xt).

Assumption 3 suptE (ε40t|Xt) < C, suptE
(
∥ηt∥

4 |Xt

)
< C a.s., E ∥Xt∥4 <∞ and E ∥f (Xt)∥4 <

∞. V (θ0) is positive definite.

We state the asymptotic normality theorem.

Theorem 4.2 Under Assumptions 1-3, for β̂ = β̂WCIV or β̂WCIV F ,

R′
n

(
β̂ − β0

)
d→ N

(
0,Π−1V (θ0)Π

−1
)
,

where

Π = −E
(
(f (Xt)− µf )

(
f
(
X+
t

)
− µf

)′ ∥∥Xt −X+
t

∥∥) .
Proof. See the Appendix.

This theorem establishes that, when suitably normalized, the asymptotic distributions of

β̂WCIV and β̂WCIV F converge to the standard normal distribution. It is noteworthy to empha-

size thatV (θ0) andΠ enjoy analytical representations, but involve f (Xt), which is unobservable.
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We have introduced Ω̂
(
θ̂,λ̂
)
and Υ̂

(
λ̂
)
in the definition of the Wald statistic. In the subse-

quent theorem, we establish the consistency of Ω̂
(
θ̂,λ̂
)
and Υ̂

(
λ̂
)
to V (θ0) and Π under a

proper normalization, and affirm the validity of the Wald test statistic for conducting parameter

inference concerning β0.

Theorem 4.3 Under Assumptions 1-3, if g (·) is continuously differentiable and G (β0) is of

full rank, under the null (5), considering
(
θ̂,λ̂
)
=
(
θ̂WCIV , λ̂WCIV

)
or
(
θ̂WCIV F , λ̂WCIV F

)
,

nR−1
n Ω̂

(
θ̂,λ̂
)
R−1′
n

p→ V (θ0) ,

nR−1
n Υ̂

(
λ̂
)
R−1′
n

p→ Π,

and

Wn

(
θ̂,λ̂
)

d→ χ2
m.

Proof. See the Appendix.

This theorem demonstrates that under the null, Wn

(
θ̂,λ̂
)

has a convenient chi-squared

asymptotic distribution, despite the fact that the degree of identification remains unknown.

An important implication of the Wald test statistic property is that it enables large-sample

inference in the usual manner, even in the absence of knowledge regarding the degree of weak

identification. In particular, we can compute t-statistics by treating β̂j as if it were normally

distributed, with a mean β0j and a variance

(
Υ̂
(
λ̂
)−1

Ω̂
(
θ̂,λ̂
)
Υ̂
(
λ̂
)−1
)
jj

/n, so that under the

null, the t-statistic
(
β̂j − β0j

)
/

√(
Υ̂
(
λ̂
)−1

Ω̂
(
θ̂,λ̂
)
Υ̂
(
λ̂
)−1
)
jj

/n is asymptotically normal

distributed. Our Monte Carlo simulations further demonstrate that these t-statistics exhibit

excellent finite-sample properties across a wide range of scenarios, and in our application, we

report

√(
Υ̂
(
λ̂
)−1

Ω̂
(
θ̂,λ̂
)
Υ̂
(
λ̂
)−1
)
jj

/n as if they were conventional standard errors.

5 Discussion on Efficiency of WCIV and WCIVF

Estimation efficiency is a highly desirable property of an estimator. In the conventional asymp-

totic framework, the efficiency of IV estimators can be achieved by employing an increasing
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number of instruments. While some literature, such as Hahn (2002), Anderson et al. (2010),

and Kunitomo (2012), discusses estimation efficiency in the context of many instruments, these

theoretical results are limited in scope. In the many weak instruments asymptotics, an increasing

number of instruments is required to ensure estimation consistency. However, the ratio between

the number of IVs and the sample size does not necessarily align with the one required by an

efficient IV estimation. Additionally, the estimation efficiency of an IV estimator involves an

optimal weighting matrix, which is difficult to estimate accurately under many instruments and

heteroskedasticity of unknown form.

Regarding estimation methods using a continuum of moments, intuition suggests that WCIV

(WCIVF) is more efficient than WMD (WMDF) due to the specialty of the non-integrable

weighting function matching the most relevant moments automatically. It is admitted that the

theoretical validation is quite challenging in the case of weak IV and conditional heteroskedas-

ticity, so we focus on a limited but still relevant framework.

We set p ≤ q ≤ 2, E (ε20t|Xt) = σ2
ε and first assume that Yt and Xt are i.i.d. normally

distributed with covariance ΣYX and V ar (Xt) = ΣXX = σ2
XIq. Define

Ω (θ) = Ω1 (θ) +Ω2 (θ)−Ω3 (θ)−Ω3 (θ)
′ ,

in which

Ω1 (θ) = E
(
(yt − α− β′Yt)

2 (
Y+
t − µY

) (
Y++
t − µY

)′ ∥∥Xt −X+
t

∥∥∥∥Xt −X++
t

∥∥)
Ω2 (θ) = E

[
(yt − α− β′Yt)

2
]
E
(
(Yt − µY )

∥∥Xt −X+
t

∥∥)E ((Yt − µY )
′ ∥∥Xt −X+

t

∥∥)
Ω3 (θ) = E

(
(yt − α− β′Yt)

2 (
Y+
t − µY

) ∥∥Xt −X+
t

∥∥)E ((Yt − µY )
′ ∥∥Xt −X+

t

∥∥) ,
and

Υ = −E
(
(Yt − µY )

(
Y+
t − µY

)′ ∥∥Xt −X+
t

∥∥) .
We demonstrate in the Appendix that under these regularity conditions, the asymptotic variance

of WCIV is

Υ−1Ω (θ0)Υ
−1 = AREWCIV (q) · σ2

ε

(
ΣYXΣ

−1
XXΣXY

)−1
,

where AREWCIV (q), the asymptotic relative efficiency of WCIV with respect to 2SLS, is equal
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to AREWCIV (1) =
π
3
≈ 1.047 and AREWCIV (2) ≈ 1.035, independently of any other parameter

beyond q, and in particular of σ2
X. This indicates that WCIV is only slightly less efficient than

2SLS in this set up and that the efficiency loss shrinks with q.

In contrast, by evaluating appropriate versions of Υ and Ω for a Gaussian kernel, the asymp-

totic relative efficiency of WMD with respect to 2SLS depends on q and σ2
X, and satisfies

AREWMD

(
1, σ2

X

)
=

(1 + 2σ2
X)

3

(1 + σ2
X)

3/2
(1 + 3σ2

X)
3/2

∈ (1, 1.540)

AREWMD

(
2, σ2

X

)
∈ (1, 1.778) ,

for q = 1, 2, where inefficiency increases with q and the lower bound is only approached as

σ2
X → 0. However, for usual values of σ2

X, WMD can be severely inefficient compared to 2SLS

or WCIV.

Further, we also show that WMD is uniformly less efficient than WCIV in the case of exponen-

tially distributed data for q = 1, though now the differences can be smaller than in the Gaussian

case. These findings echo the specialties of the non-integrable weighting function employed in

the objective function of WCIV.

6 Monte Carlo Evidence

In this section, we evaluate the finite-sample performance of WCIV and WCIVF and compare

it with that of WMD, WMDF, and HFUL. Following Hausman et al. (2012), the instruments

used in HFUL are (
1,X′

t,
(
X2
t

)′
,
(
X3
t

)′
,
(
X4
t

)′
,X′

td1, ...,X
′
tdL−4

)′
,

where Xr
t =

(
Xr

1,t, ..., X
r
q,t

)′
, in which r is a positive integer, dl ∈ {0, 1}, and Pr (dl = 1) = 1/2.

We consider L = 1, 4, or 9, that is, when L = 1, the instruments are (1,X′
t)

′; when L = 4,

(1,X′
t, (X

2
t )

′
,(X3

t )
′
, (X4

t )
′
)′; when L = 9,

(1,X′
t,
(
X2
t

)′
,
(
X3
t

)′
,
(
X4
t

)′
,X′

td1, ...,X
′
td5)

′.
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We denote these HFUL estimators as HFUL1, HFUL4, and HFUL9, respectively. The com-

parisons among these estimators are in terms of median biases, ranges between the 0.05 and

0.95 quantiles, and empirical rejection frequencies for t-statistics at the 5% nominal level. The

number of Monte Carlo simulations is 10, 000.

6.1 Setup 1

The models that we consider are

M1 : yt = α0 + β0Yt + ε0t, Yt =

√
c/q

n

q∑
j=1

Xj,t + ηt,

M2 : yt = α0 + β0Yt + ε0t, Yt =

√
c/q

n

q∑
j=1

X2
j,t + ηt,

M3 : yt = α0 + β0Yt + ε0t, Yt = 1

{√
c/q

n

q∑
j=1

Xj,t + ηt > 0

}
,

where 1 {·} denotes an indicator function. In M1, E (Yt|Xt) is linear. In M2 and M3, E (Yt|Xt)

is nonlinear. To mimic empirical situations, the elements of Xt = (X1,t, ..., Xq,t)
′ follow

Xj,t =
e0,t + ej,t√

2
, j = 1, ..., q,

where (e0,t, e1,t, ..., eq,t)
′ ∼ i.i.d.N (0, Iq+1). By construction, the correlation coefficient between

Xj,t and Xk,t for j ̸= k is 0.5 due to the presence of the common shocks e0,t. ε0t is allowed to be

heteroskedastic as

ε0t = ρηt +

√
1− ρ2

ϕ2 + (0.86)4
(
ϕη1,t + 0.86η2,t

)
, η1,t ∼ N

(
0, X2

1,t

)
, η2,t ∼ N

(
0, 0.862

)
,

where η1,t and η2,t are independent of ηt. Hausman et al. (2012) show that this design causes

LIML to be inconsistent when ϕ ̸= 0. We set ϕ = 0, 0.5. We set α0 = β0 = 0 without loss of

generality and consider a sample size of n = 250, c = 10, and ρ = 0.6. Further, we consider

q = 3, 10, 15 to mimic the application of the EIS estimation.

In Tables 1–3, we report the simulation results on β0 for WCIV, WCIVF(C = 1), WMD,

WMDF(C = 1), HFUL1(C = 1), HFUL4(C = 1) and HFUL9(C = 1). The main features of the

21



results are as follows:

1. For M1, when q = 3, HFUL1 has the best performance in terms of the range between

the 0.05 and 0.95 quantiles (DecR), while HFUL4 and HFUL9 are much more dispersed.

However, for q = 10 and 15, WCIV and WCIVF outperform HFUL1, HFUL4, and HFUL9

regarding DecR when ϕ = 0 or 0.5. Additionally, WCIV and WCIVF are almost median

unbiased for all cases, whereas HFUL1, HFUL4, and HFUL9 show relatively large median

biases, consistent with the results of simulations in Hausman et al. (2012). With regard

to the empirical properties of the t-statistics, both WCIV and WCIVF produce accurate

empirical sizes, while HFUL1 is undersized and HFUL9 is oversized, especially for the high-

dimensional cases. WMD and WMDF exhibit comparable features to WCIV and WCIVF

in terms of median biases and empirical properties of the t-statistics but have substantially

larger DecR as expected. Furthermore, while both WCIVF and WCIV perform similarly,

WMDF outperforms WMD in terms of DecR but performs worse than WMD in terms of

median biases and properties of the t-statistics, particularly for the high-dimensional cases.

2. For M2, HFUL1 is severely median biased and dispersed, while HFUL4 and HFUL9 are

much less biased and less dispersed, as the linear instruments employed in HFUL1 cannot

approximate the nonlinear reduced form sufficiently. However, both WCIV and WCIVF

are almost median unbiased, with the empirical rejection frequencies for the t-statistics

well controlled. In terms of DecR, WCIV and WCIVF outperform WMD and WMDF

substantially, and are better than HFULs except for HFUL4 in the case of q = 3.

3. For M3, HFUL1, HFUL4, and HFUL9 are all heavily median biased, especially when

q = 3, while WCIV and WCIVF are almost median unbiased in all cases. So are WMD

and WMDF when q is small. When q is large, however, it appears that WMDF worsens

in terms of median bias, whereas it is less dispersed than WMD. In terms of DecR, WCIV

and WCIVF outperform WMD and WMDF substantially in all cases, and are better than

HFULs except for HFUL1 in the case of q = 3.

In summary, we conclude that WCIV andWCIVF have exceptional finite-sample properties in

the context of Setup 1. They exhibit almost median unbiasedness in all cases, and their empirical
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WCIV WCIVF WMD WMDF HFUL1 HFUL4 HFUL9
ϕ = 0 q = 3

Med 0.0015 0.0016 0.0017 0.0047 0.0330 0.0339 0.0464
DecR 0.8347 0.8341 1.0607 1.0452 0.7504 0.8806 1.1013
Rej 0.0537 0.0537 0.0547 0.0554 0.0336 0.0510 0.0797

q = 10
Med 0.0016 0.0018 0.0015 0.0096 0.0111 0.0151 0.0209
DecR 0.4722 0.4717 0.7321 0.7052 0.4768 0.6338 0.9444
Rej 0.0513 0.0514 0.0458 0.0506 0.0114 0.0308 0.0740

q = 15
Med 0.0000 0.0003 -0.0004 0.0337 0.0084 0.0126 0.0293
DecR 0.3782 0.3780 0.7192 0.6159 0.3877 0.5617 0.9736
Rej 0.0472 0.0474 0.0507 0.0664 0.0040 0.0197 0.0741

ϕ = 0.5 q = 3
Med -0.0031 -0.0030 -0.0061 -0.0034 0.0361 0.0400 0.0524
DecR 0.9336 0.9337 1.1291 1.1103 0.8453 0.9939 1.2257
Rej 0.0503 0.0503 0.0500 0.0509 0.0362 0.0574 0.0882

q = 10
Med -0.0017 -0.0015 -0.0012 0.0070 0.0135 0.0172 0.0224
DecR 0.4993 0.4989 0.7219 0.6993 0.5141 0.6510 0.9754
Rej 0.0458 0.0458 0.0507 0.0538 0.0144 0.0337 0.0738

q = 15
Med 0.0002 0.0005 -0.0018 0.0317 0.0111 0.0141 0.0228
DecR 0.4054 0.4048 0.6831 0.5891 0.4186 0.5765 0.9542
Rej 0.0500 0.0500 0.0487 0.0632 0.0080 0.0285 0.0768

Table 1: Linear IV model M1 : yt = α0 + β0Yt + ε0t, Yt =
√

c/q
n

∑q
j=1Xj,t + ηt. Median bias

(Med), the range between the 0.05 and 0.95 quantiles (DecR), and empirical rejection frequencies
for t-statistics at 5% nominal level (Rej) are reported.

rejection frequencies of the t-statistics are close to the nominal value. They are considerably less

dispersed than WMD and WMDF in all cases, whose variance increases with q unlike WCIV

and WCIVF for M2 and M3 as predicted by our theory. In comparison with HFUL, both

WCIV and WCIVF exhibit less dispersion in most cases, particularly for nonlinear reduced forms

and large values of q. Furthermore, HFUL is generally more biased than WCIV and WCIVF.

Additionally, the finite-sample properties of HFUL are significantly sensitive to the number of

selected instruments, particularly when the reduced forms are nonlinear. These findings illustrate

that HFUL may provide misleading estimates when the reduced forms are not well-approximated

using linear combinations of the selected instruments.
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WCIV WCIVF WMD WMDF HFUL1 HFUL4 HFUL9
ϕ = 0 q = 3

Med 0.0000 0.0009 -0.0020 0.0028 0.5617 0.0267 0.0272
DecR 1.0401 1.0326 1.2310 1.1989 1.5104 0.7683 0.9729
Rej 0.0398 0.0398 0.0512 0.0516 0.5472 0.0436 0.0701

q = 10
Med 0.0000 0.0029 0.0016 0.0163 0.4764 0.0137 0.0281
DecR 0.6050 0.5941 1.0552 0.9506 1.9397 0.6783 1.0975
Rej 0.0373 0.0382 0.0504 0.0558 0.5252 0.0256 0.0719

q = 15
Med -0.0009 0.0012 -0.0026 0.0576 0.4480 0.0142 0.0470
DecR 0.4831 0.4772 1.1197 0.7513 2.0637 0.6847 1.2875
Rej 0.0366 0.0379 0.0574 0.0808 0.5118 0.0260 0.0804

ϕ = 0.5 q = 3
Med -0.0189 -0.0165 -0.0118 -0.0069 0.5668 0.0317 0.0379
DecR 1.1754 1.1458 1.2764 1.2380 1.5758 0.8506 1.0585
Rej 0.0359 0.0362 0.0474 0.0482 0.5313 0.0555 0.0808

q = 10
Med -0.0092 -0.0059 -0.0107 0.0048 0.5072 0.0178 0.0310
DecR 0.6711 0.6615 1.0626 0.9508 1.9612 0.7379 1.1046
Rej 0.0351 0.0366 0.0466 0.0519 0.5471 0.0345 0.0757

q = 15
Med -0.0030 -0.0003 -0.0030 0.0590 0.4479 0.0168 0.0399
DecR 0.5380 0.5282 1.0702 0.7366 2.0453 0.7144 1.2552
Rej 0.0408 0.0415 0.0550 0.0780 0.5172 0.0302 0.0850

Table 2: Linear IV model M2 : yt = α0 + β0Yt + ε0t, Yt =
√

c/q
n

∑q
j=1X

2
j,t + ηt. Median bias

(Med), the range between the 0.05 and 0.95 quantiles (DecR), and empirical rejection frequencies
for t-statistics at 5% nominal level (Rej) are reported.

6.2 Setup 2

The alternative linear models, which are similar to Antoine and Lavergne (2014), are

M4 : yt = α0 + β0Yt +
√
0.5 + 0.5X2

1,tε0t, Yt =

√
c/q

n0.45

q∑
j=1

Xj,t + ηt,

M5 : yt = α0 + β0Yt +
√
0.5 + 0.5X2

1,tε0t, Yt =

√
c/q

n0.45

q∑
j=1

Xj,t + exp(0.5 + 0.5X1,t,)ηt,

M6 : yt = α0 + β0Yt +
√
0.5 + 0.5X2

1,tε0t, Yt = exp

(√
c/q

n0.45

q∑
j=1

Xj,t

)
+ ηt.

24



WCIV WCIVF WMD WMDF HFUL1 HFUL4 HFUL9
ϕ = 0 q = 3

Med -0.0062 -0.0057 0.0006 0.0091 0.0843 0.1167 0.1554
DecR 2.3123 2.3006 3.1884 3.0489 1.9550 2.5684 3.5802
Rej 0.0442 0.0442 0.0457 0.0465 0.0233 0.0478 0.0829

q = 10
Med -0.0095 -0.0090 -0.0046 0.0175 0.0369 0.0455 0.1031
DecR 1.2964 1.2948 2.3624 2.2003 1.3876 2.0770 3.4899
Rej 0.0419 0.0420 0.0462 0.0483 0.0094 0.0327 0.0726

q = 15
Med -0.0026 -0.0017 -0.0114 0.0759 0.0248 0.0412 0.1182
DecR 1.1017 1.1006 2.3307 1.8374 1.2120 1.9415 3.7257
Rej 0.0483 0.0487 0.0478 0.0606 0.0046 0.0309 0.0800

ϕ = 0.5 q = 3
Med -0.0028 -0.0023 -0.0121 -0.0043 0.1153 0.1288 0.1585
DecR 2.5261 2.5255 3.3285 3.2036 2.1789 2.8813 3.8007
Rej 0.0417 0.0418 0.0441 0.0445 0.0302 0.0562 0.0855

q = 10
Med -0.0011 -0.0005 0.0020 0.0231 0.0474 0.0617 0.0995
DecR 1.3954 1.3937 2.2599 2.1132 1.4886 2.1757 3.5166
Rej 0.0420 0.0420 0.0437 0.0465 0.0142 0.0402 0.0783

q = 15
Med -0.0055 -0.0049 -0.0116 0.0761 0.0298 0.0315 0.1004
DecR 1.1689 1.1680 2.3200 1.7693 1.3057 2.0461 3.8185
Rej 0.0459 0.0460 0.0471 0.0585 0.0075 0.0328 0.0806

Table 3: Linear IV model M3 : yt = α0+β0Yt+ ε0t, Yt = 1

{√
c/q
n

∑q
j=1Xj,t + ηt > 0

}
. Median

bias (Med), the range between the 0.05 and 0.95 quantiles (DecR), and the empirical rejection
frequencies for t-statistics at the 5% nominal level (Rej) are reported.

Note that heteroskedasticity in model disturbances is allowed for. In all models ε0t and ηt follow

a joint normal distribution with a covariance matrix

 1 ρ

ρ 1

. Xt = (X1,t, ..., Xq,t)
′ follows

the same setup as in Setup 1. The reduced form in M4 is a linear model with homoskedastic

errors; the reduced form in M5 is a linear model with heteroskedastic errors; while the reduced

form in M6 is nonlinear. We set α0 = β0 = 0 again. In the simulations, we set c = 4, 8, ρ = 0.8,

and n = 250. Clearly, when c = 4, the degree of weak identification is more severe. We consider

q = 4, 8 and 16 to check the finite sample properties of estimators under different dimensions of

conditioning variables.

Tables 4–6 report the simulation results of β0 for WCIV,WCIVF(C = 1), WMD,WMDF(C =
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WCIV WCIVF WMD WMDF HFUL1 HFUL4 HFUL9
c = 4 q = 4

Med -0.0101 -0.0098 -0.0238 -0.0186 0.0551 0.0629 0.0719
DecR 1.1091 1.1065 1.3296 1.2916 0.9853 1.1049 1.2708
Rej 0.0582 0.0584 0.0595 0.0608 0.066 0.0887 0.1168

q = 8
Med -0.0044 -0.0041 -0.0123 -0.0029 0.0312 0.0381 0.0501
DecR 0.7490 0.7479 0.9619 0.9230 0.7440 0.8893 1.1267
Rej 0.0506 0.0506 0.0548 0.0570 0.0446 0.0671 0.0958

q = 16
Med -0.0036 -0.0030 -0.0099 0.0718 0.0173 0.0236 0.0482
DecR 0.5232 0.5222 0.8615 0.5967 0.5459 0.6845 1.0630
Rej 0.0473 0.0475 0.0560 0.0913 0.0242 0.0484 0.0983

c = 8 q = 4
Med -0.0048 -0.0047 -0.0121 -0.0099 0.0274 0.0306 0.0301
DecR 0.7233 0.7229 0.7913 0.7831 0.7120 0.7642 0.8497
Rej 0.0511 0.0513 0.0516 0.0525 0.0608 0.0693 0.0836

q = 8
Med -0.0023 -0.0022 -0.0068 -0.0020 0.0164 0.0203 0.0237
DecR 0.5104 0.5097 0.6007 0.5920 0.5195 0.5636 0.6661
Rej 0.0495 0.0496 0.0465 0.0479 0.0439 0.0538 0.0721

q = 16
Med -0.0019 -0.0017 -0.0058 0.0364 0.0080 0.0106 0.0202
DecR 0.3611 0.3610 0.5276 0.4518 0.3752 0.4241 0.5966
Rej 0.0511 0.0511 0.0460 0.0710 0.0244 0.0361 0.0732

Table 4: Linear IV model M4 : yt = α0 + β0Yt +
√

0.5 + 0.5X2
1,tε0t, Yt =

√
c/q

n0.45

∑q
j=1Xj,t + ηt.

Median bias (Med), the range between the 0.05 and 0.95 quantiles (DecR), and empirical rejection
frequencies for t-statistics at 5% nominal level (Rej) are reported.

1), HFUL1(C = 1), HFUL4(C = 1), and HFUL9(C = 1). The general conclusions are similar to

those presented in Setup 1. That is, WCIV and WCIVF have excellent finite sample properties,

outperforming other alternatives, especially when the q values are large and the reduced forms

are nonlinear. On the other hand, when the weak identification is severe, HFUL has very poor

finite sample properties. Notably HFUL is heavily biased in the case of M5.

7 Application to Estimating the EIS in Consumption

In this section, we use WCIV andWCIVF to estimate the EIS in consumption for macroeconomic

datasets from the U.S. The EIS in consumption, which measures how much consumers change
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WCIV WCIVF WMD WMDF HFUL1 HFUL4 HFUL9
c = 4 q = 4

Med 0.0334 0.0343 0.0432 0.0518 0.1375 0.1841 0.2064
DecR 1.8895 1.7986 2.8125 1.7637 0.8177 1.1188 1.1978
Rej 0.0835 0.0836 0.1086 0.1119 0.1311 0.2218 0.2415

q = 8
Med 0.0054 0.0065 0.0262 0.0423 0.0781 0.1337 0.1765
DecR 1.0639 1.0260 2.1302 1.2105 0.7390 1.1126 1.2096
Rej 0.071 0.0711 0.1046 0.1107 0.0955 0.1938 0.2178

q = 16
Med -0.0008 0.0000 0.0393 0.1381 0.0366 0.0940 0.1624
DecR 0.6651 0.6531 2.3379 0.5004 0.6126 1.0625 1.1677
Rej 0.0656 0.0664 0.1198 0.1950 0.0723 0.1905 0.2161

c = 8 q = 4
Med 0.0050 0.0053 0.0040 0.0095 0.0687 0.1023 0.1257
DecR 0.9909 0.9761 1.2214 1.0523 0.6650 1.0186 1.1128
Rej 0.0699 0.0700 0.0831 0.0850 0.0908 0.1689 0.1872

q = 8
Med -0.0006 0.0000 -0.0005 0.0093 0.0324 0.0547 0.0887
DecR 0.6195 0.6128 0.8948 0.7338 0.5392 0.7956 1.0709
Rej 0.0619 0.0620 0.0784 0.0819 0.0632 0.127 0.1671

q = 16
Med -0.0010 -0.0006 0.0013 0.0749 0.0140 0.0321 0.0799
DecR 0.4081 0.4058 0.8885 0.3698 0.4309 0.6528 0.9985
Rej 0.058 0.0587 0.0842 0.1386 0.0381 0.1140 0.1557

Table 5: Linear IV model M5 : yt = α0 + β0Yt +
√

0.5 + 0.5X2
1,tε0t, Yt =

√
c/q

n0.45

∑q
j=1Xj,t +

exp(0.5+0.5X1,t,)ηt. Median bias (Med), the range between the 0.05 and 0.95 quantiles (DecR),
and the empirical rejection frequencies for t-statistics at the 5% nominal level (Rej) are reported.

their expected consumption growth rate in response to changes in the expected return on any

asset, is a parameter of central importance in macroeconomics and finance. For instance, King

and Rebelo (1990) demonstrates that the EIS is the key parameter in a simple neoclassical model

of endogenous growth, which involves taxation. In consumption-based asset pricing models, the

EIS determines the optimal consumption rule, as observed in Campbell and Viceira (1999).

Sequentially, the EIS is a key input parameter in many macroeconomic or financial model

calibrations. In recent years, the EIS has been set to be quite large in many cases, reflecting the

general view among macroeconomists today that a high EIS is more consistent with the stylized

facts of macroeconomic dynamics. For example, Bansal and Yaron (2004) choose an EIS value

as large as 1.5, while Barro (2009), Ai (2010), and Colacito and Croce (2011) set the EIS value to
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WCIV WCIVF WMD WMDF HFUL1 HFUL4 HFUL9
c = 4 q = 4

Med -0.0101 -0.0099 -0.0220 -0.0177 0.0533 0.0550 0.0641
DecR 1.0618 1.0613 1.2879 1.2584 0.9502 1.0748 1.2412
Rej 0.0556 0.0560 0.0597 0.0605 0.0668 0.0839 0.1093

q = 8
Med 0.0005 0.0009 -0.0039 0.0033 0.0331 0.0339 0.0380
DecR 0.7052 0.7036 0.9136 0.8756 0.7023 0.8054 1.0154
Rej 0.0541 0.0547 0.0586 0.0619 0.0455 0.0679 0.0915

q = 16
Med 0.0011 0.0016 -0.0035 0.0642 0.0168 0.0206 0.0352
DecR 0.4648 0.4646 0.7355 0.5478 0.4931 0.5847 0.8606
Rej 0.0488 0.0490 0.0555 0.0875 0.0231 0.0437 0.0872

c = 8 q = 4
Med -0.0051 -0.0050 -0.0118 -0.0096 0.0247 0.0228 0.0239
DecR 0.6652 0.6651 0.7349 0.7287 0.6644 0.6928 0.7671
Rej 0.0474 0.0475 0.0495 0.0502 0.0610 0.0640 0.0787

q = 8
Med 0.0007 0.0008 -0.0015 0.0024 0.0155 0.0168 0.0164
DecR 0.4504 0.4502 0.5311 0.5229 0.4627 0.4816 0.5492
Rej 0.0531 0.0534 0.0495 0.0513 0.0495 0.0565 0.0696

q = 16
Med 0.0005 0.0007 -0.0014 0.0283 0.0070 0.0098 0.0135
DecR 0.2884 0.2883 0.4147 0.3678 0.3078 0.3228 0.4167
Rej 0.0503 0.0507 0.0485 0.068 0.0293 0.0349 0.0693

Table 6: Linear IV modelM6 : yt = α0+β0Yt+
√

0.5 + 0.5X2
1,tε0t, Yt = exp

(√
c/q

n0.45

∑q
j=1Xj,t

)
+

ηt. Median bias (Med), the range between the 0.05 and 0.95 quantiles (DecR), and the empirical
rejection frequencies for t-statistics at the 5% nominal level (Rej) are reported.

2. However, to date, empirical results based on macroeconomic datasets have provided limited

support to this view.2 Early literature, such as Hansen and Singleton (1983), has suggested

EIS values as high as one. However Hall (1988) argues that they did not appropriately consider

the time-aggregation problem of the data, and the employed instruments were problematic.

When valid instruments are employed, Hall (1988) finds that the 2SLS estimates of the EIS for

the U.S. are unlikely to be much higher than 0.1 and may well be 0. Yogo (2004) points out

that these misleading results may be attributed to weak instruments. Yogo (2004) and Ascari

2At the micro data level, there is some evidence of a high EIS value. For example, Attanasio and Weber
(1993) find higher values for using disaggregated cohort-level consumption data; Vissing-Jorgensen (2002), using
household data, records a higher EIS value among asset market participants. However, these results do not
directly support the large EIS values observed in macro model calibrations because they are based on aggregate
macro data.
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et al. (2021) employ weak-instrument-robust inference procedures on macroeconomic datasets,

following Staiger and Stock (1997), Kleibergen (2002), Moreira (2003) and Kleibergen (2005);

however, they reach similar conclusions as in Hall (1988).

To derive the estimable log-linearized Euler equation, we consider a basic consumption-based

asset pricing model with the Epstein-Zin utility function. Let δ be the subjective discount factor,

γ be the coefficient of relative risk aversion, and θ = (1− γ) / (1− 1/ψ), where ψ is the EIS

in consumption. Following Epstein and Zin (1989) and Epstein and Zin (1991), the objective

utility function is defined recursively by

Ut =
[
(1− δ)C

(1−γ)/θ
t + δ

(
EtU

1−γ
t+1

)1/θ]θ/(1−γ)
, (14)

where Ct is consumption at time t; Et denotes conditional expectation E (·|Ft), where Ft is

the information set at time t. In the special case where γ = 1/ψ, (14) reduces to the familiar

time-separable power utility model with period utility function U (Ct) = C1−γ
t / (1− γ). The

representative household maximizes the objective function (14) subject to the intertemporal

budget constraint

Wt+1 = (1 +Rw,t+1) (Wt − Ct) , (15)

where Wt+1 is the household’s wealth and 1 + Rw,t+1 is the gross real return on the portfolio of

all invested wealth at t + 1. Epstein and Zin (1991) show that equations (14) and (15) imply

the Euler equation of the form

Et

(δ(Ct+1

Ct

)−1/ψ
)θ (

1

1 +Rw,t+1

)1−θ

(1 +Rj,t+1)

 = 1, (16)

where 1 +Rj,t+1 is the gross real return on asset j.

Let lowercase letters denote the logarithms of the corresponding uppercase variables (e.g.,

rj,t+1 = log (1 +Rj,t+1)). By assuming that asset returns and consumption are homoskedastic

and jointly log normal conditional on Ft, the Euler equation (16) can be linearized as
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Et

(
rj,t+1 − ηj −

1

ψ
△ct+1

)
= 0, (17)

and

ηj = ηf −
1

2
V ar (rj,t+1 − Etrj,t+1) +

θ

ψ
Cov (rj,t+1 − Etrj,t+1,△ct+1 − Et△ct+1)

+ (1− θ)Cov (rj,t+1 − Etrj,t+1, rw,t+1 − Etrw,t+1) ,

with

ηf = − log δ +
θ − 1

2
V ar (rw,t+1 − Etrw,t+1)−

θ

2ψ2V ar (△ct+1 − Et△ct+1) .

If asset returns and consumption are conditionally heteroskedastic, we can still obtain a similar

linearized Euler equation; however, rj,t+1 − ηj − 1
ψ
△ct+1 is now heteroskedastic; see Yogo (2004)

for a more detailed discussion.

For macroeconomic datasets from the U.S., researchers have commonly employed instru-

mental variable regression techniques to gauge the EIS. Typically, these methodologies require

selecting an IV set Xt, drawn from the elements within the information set. By invoking the

law of iterated expectations, the ensuing expressions

E
[
rj,t+1 − ηj − 1/ψ△ct+1|Xt

]
= 0, (18)

and its reverse form

E [△ct+1 − αj − ψrj,t+1|Xt] = 0 (19)

can be derived. A majority of the empirical investigations, such as Hall (1988), Campbell (2003),

Yogo (2004), Beeler and Campbell (2012), and Ascari et al. (2021), has posited linear reduced

forms, thereby specifying the moment conditions as follows:

E
[
Xt

(
rj,t+1 − ηj − 1/ψ△ct+1

)]
= 0,

and

E [Xt (△ct+1 − αj − ψrj,t+1)] = 0.

It is worth noting that previous studies have employed the lag terms of asset returns, consumption
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growth, and other related macroeconomic variables as instruments. In particular, Yogo (2004)

incorporates the lag terms of the nominal asset return, inflation rate, consumption growth, and

log dividend-price ratio, while Campbell (2003) includes the lag terms of the real asset return,

real consumption growth, and log dividend-price ratio. Additionally, Beeler and Campbell (2012)

utilize the lag terms of the real interest rate, real stock return, real consumption growth, and

log dividend-price ratio. On the other hand, Ascari et al. (2021) consider the lag terms of the

real consumption growth and real asset return.

However, the linear reduced forms assumed by these studies may be debatable. Existing

empirical evidence suggests that linear serial dependence is not significantly present in asset

returns and consumption growth at macro level. Further, the weak instrument evidence, as indi-

cated by the relatively low first-stage F-statistic values reported in Yogo (2004) and Ascari et al.

(2021), might be attributed to the misspecification of the reduced forms. While aforementioned

empirical studies obtain small EIS results, Carrasco and Tchuente (2015) and Escanciano (2018)

obtain relatively larger EIS estimates by adopting nonlinear instruments in their methods. How-

ever, despite the magnitudes of these estimates, they fail to achieve statistical significance when

compared to zero. It is noteworthy that both aforementioned methods are not robust to weak

instruments and heteroskedasticity of unknown form. As such, it seems promising to apply the

methodology developed in this study to gauge the EIS in consumption.

7.1 The U.S. Quarterly Data in Ascari et al. (2021)

We first utilize the data set from Ascari et al. (2021) which includes the quarterly data on equity

markets and macroeconomic variables from Q4 1955 to Q1 2018. For the nominal interest rate

it, this analysis employs the three-month treasury bill rate; the nominal stock return st is the

S&P 500 return. ct is the log of the real consumption of nondurables and services, following

Campbell and Mankiw (1989) and Yogo (2004). The inflation rate πt is determined based on the

deflator that corresponds to the consumption of nondurables and services. Additional details

regarding the data sources and transformation techniques can be found in the supplementary

appendix of Ascari et al. (2021).
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As per Ascari et al. (2021), the ex-post real interest rate it−πt+1 and the ex-post real stock re-

turn st−πt+1 are considered in the empirical analysis. The EIS is estimated using the real interest

rate as the asset return.3 Xt comprises the lag terms of the real interest rate, real stock return,

consumption growth, and the first difference of the log dividend-price ratio (△dpt). It is worth-

while mentioning that the first difference of the log dividend-price ratio is considered instead of

the log dividend-price ratio, due to its non-stationary nature.4 Specifically, to estimate (18) and

(19), we use it− πt+1, st− πt+1, ∆ct, and ∆dpt from the first lag up to the third lag. Thus they

are at least lagged twice to avoid the data aggregation issue described in Hall (1988). For com-

parison, the estimates obtained using alternative estimation procedures are also reported. For

HFUL, the instruments include constant and pairwise instruments
(
X′
t, (X

2
t )

′
,X′

td1, ...,X
′
tdL−2

)′
,

where dl ∈ {0, 1}, Pr (dl = 1) = 1/2. We consider L = 1, 2 or 6, i.e, when L = 1, the instru-

ments are (1,X′
t)

′; when L = 2, (1,X′
t, (X

2
t )

′
)′; when L = 6, (1,X′

t, (X
2
t )

′
,X′

td1, ...,X
′
td4)

′. We

denote these HFUL estimates as HFUL1, HFUL2, and HFUL6, respectively. We have to utilize

a smaller number of instruments to avoid singular matrix problems in HFUL. We set C = 1 for

WCIVF, WMDF, and HFUL.

Table 7 presents the estimation results for 1/ψ and ψ. Notably, the WCIV and WCIVF

estimates of the EIS (ψ) appear to be large, and statistically significant at the 10% significant

level. These findings hold true over model transformation, with the inverse of the WCIV and

WCIVF estimates of 1/ψ aligning with those of ψ. The WMD and WMDF estimates of the EIS

are comparable to those of WCIV and WCIVF in some cases, indicating the robustness of the

exploitation of the continuum of instruments. However, the WMD estimates are not statistically

significant at the 10% significant level, and the WMDF estimates of ψ are generally much smaller

than the WCIV and WCIVF estimates. Furthermore, the WMD and WMDF estimates of ψ

frequently differ substantially. For example, for the first IV set, the WMD estimate of the EIS

is 1.19 and statistically insignificant at the 10% significant level, while the WMDF estimate is

0.77, and statistically significant at the 10% significant level. The HFUL estimates of the EIS are

3We did not consider the stock return as the asset return, since it is harder to predict, and the problem of
weak instruments is more severe, as demonstrated in previous empirical studies.

4The null hypothesis that the log price-dividend ratio is a unit root is not rejected by the Phillips-Perron test
at the 5% significant level.
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WCIV WCIVF WMD WMDF HFUL1 HFUL2 HFUL6 2SLS
lags 1

ψ 1.03∗ 1.01∗ 1.19 0.77∗ 0.15 0.22∗∗ 0.19 0.14
(0.62) (0.60) (0.97) (0.45) (0.14) (0.11) (0.17) (0.10)

1/ψ 0.98 0.97 0.84 0.67 4.77 3.95 4.03 0.62∗∗

(0.61) (0.61) (0.71) (0.51) (4.32) (2.05) (2.41) (0.31)
lags 1 to 2

ψ 1.15∗ 1.14∗ 1.27 0.90∗ 0.21 0.23 0.19 0.17∗

(0.64) (0.63) (0.90) (0.49) (0.16) (0.16) (0.15) (0.09)
1/ψ 0.87∗ 0.86∗ 0.78 0.68 3.94 3.65 3.28 0.50∗∗

(0.50) (0.50) (0.58) (0.47) (3.00) (2.45) (1.67) (0.23)
lags 1 to 3

ψ 1.62∗ 1.60∗ 1.82 1.36∗∗ 0.23 0.24 0.26 0.18∗∗

(0.94) (0.92) (1.16) (0.67) (0.18) (0.21) (0.27) (0.09)
1/ψ 0.62∗ 0.61∗ 0.55∗ 0.52∗ 3.67 3.45 2.98 0.46∗∗

(0.34) (0.34) (0.33) (0.31) (2.81) (2.95) (2.55) (0.22)

Table 7: The estimates of the EIS using real interest rate as the asset return. The quarterly data
range is from Q4 1955 to Q1 2018. The EIS is estimated from E [△ct+1 − α− ψrt+1|Xt] = 0.
The reciprocal of the EIS is estimated from E [rt+1 − µ− 1/ψ△ct+1|Xt] = 0. Xt comprises lag
terms of the real interest rate, real stock return, consumption growth, and the first difference of
the log dividend-price ratio from the first lag up to the third lag. The values in the brackets are
the standard deviations of the corresponding estimates. ∗ and ∗∗ represent the significance at
10% and 5% respectively.

generally greater than the 2SLS estimates, but much less than the WCIV and WCIVF estimates.

7.2 The U.S. Quarterly Data in Beeler and Campbell (2012)

To further check the robustness of the WCIV and WCIVF estimates of the EIS, an alternative

quarterly data set from Beeler and Campbell (2012) is considered. The data range is from Q2

1947 to Q4 2008. The stock market data are based on the monthly CRSP NYSE/AMEX Value-

weighted Indices. The real interest rates and real stock returns are ex-ante. See the appendix of

Beeler and Campbell (2012) for a detailed description of the data, sources, and transformation

used.

The EIS is estimated using the real interest rate as the asset return. Three sets of Xt are

considered. The first set consists of the lag terms of the real interest rate, real stock return,

and consumption growth. The second set consists of the lag terms of the real interest rate,

consumption growth, and the first difference of the log price-dividend ratio. The third set
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WCIV WCIVF WMD WMDF HFUL1 HFUL2 HFUL6 2SLS
Set 1

ψ 1.21∗∗ 1.19∗∗ 1.10∗ 0.83∗∗ 0.30∗∗ 0.29∗∗ 0.27∗∗ 0.29∗∗

(0.61) (0.59) (0.59) (0.37) (0.13) (0.13) (0.14) (0.13)
1/ψ 0.83∗ 0.81∗ 0.91∗ 0.57∗∗ 2.90∗∗ 2.91∗∗ 2.97∗∗ 1.13∗∗∗

(0.46) (0.45) (0.50) (0.26) (1.32) (1.32) (1.46) (0.31)
Set 2

ψ 0.90∗∗ 0.87∗∗ 0.95∗∗ 0.34∗∗∗ 0.30∗∗ 0.29∗∗ 0.27∗ 0.29∗∗∗

(0.36) (0.35) (0.48) (0.12) (0.13) (0.13) (0.15) (0.12)
1/ψ 1.11∗ 1.02∗ 1.06∗ 0.19∗∗ 2.89∗∗ 2.90∗∗ 2.82∗∗ 1.12∗∗∗

(0.65) (0.56) (0.63) (0.07) (1.31) (1.32) (1.32) (0.31)
Set 3

ψ 1.21∗ 1.19∗ 1.10∗ 0.84∗∗ 0.30∗∗ 0.30∗∗ 0.32∗∗ 0.29∗∗

(0.61) (0.60) (0.60) (0.38) (0.13) (0.14) (0.14) (0.13)
1/ψ 0.83∗ 0.81∗ 0.91∗ 0.59∗∗ 2.89∗∗ 2.86∗∗ 2.71∗∗ 1.13∗∗∗

(0.46) (0.45) (0.50) (0.27) (1.31) (1.30) (1.38) (0.31)

Table 8: The estimates of the EIS using real interest rate as the asset return. The data range
is from Q2 1947 to Q4 2008. The EIS is estimated from E [△ct+1 − α− ψrt+1|Xt] = 0. The
reciprocal of the EIS is estimated from E [rt+1 − µ− 1/ψ△ct+1|Xt] = 0. The first set consists of
the first lag terms of real interest rate, real stock return, and consumption growth. The second
set consists of the first lag terms of real interest rate, consumption growth, and the first difference
of the log price-dividend ratio. The third set consists of the first lag terms of real interest rate,
real stock return, consumption growth, and the first difference of the log price-dividend ratio.
The values in the brackets are the standard deviations of the corresponding estimates. ∗ and ∗∗
represent the significance at 10% and 5% respectively.

consists of the lag terms of the real interest rate, real stock return, consumption growth, and

the first difference of the log price-dividend ratio. We consider the first lag terms of Xt in our

analysis. The empirical results are reported in Table 8. It is observed that the WCIV and

WCIVF estimates of the EIS are also quite large, although the data range, data structure, and

Xt are different.

In summary, we obtain large WCIV and WCIVF estimates of the EIS in consumption, which

well exceed one, and are statistically significant from zero. Further, these findings are robust

to the distinct sets of Xt, model transformations, data structures and ranges. These results are

strikingly different from those of HFUL and lend strong support to the practices of some model

calibrations, which choose substantially large values of the EIS.
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8 Conclusion

This study proposes two novel IV estimators, namely WCIV and WCIVF, utilizing a continuum

of instruments and a unique non-integrable weighting function in the minimum distance objective

functions of IV estimation. This study demonstrates that these estimators are consistent and

asymptotically normally distributed in the face of weak instruments and heteroskedasticity of

unknown form. Extensive Monte Carlo simulations reveal that they exhibit highly favorable

finite sample properties under various model setups. We apply WCIV and WCIVF to estimate

the EIS of consumption for macroeconomic datasets of the U.S. Our results show the WCIV

and WCIVF estimates well exceed one and are statistically significant, being strikingly different

from the results obtained using alternative approaches.

9 Appendix

Denote
∑

j,k =
∑n

j=1

∑n
k=1. Let w.p.a.1 denote with probability approaching one.

Lemma 9.1 For all X ∈ Rq

∫
Rq

1− cos ⟨τ ,X⟩
∥τ∥q+1 dτ = cq ∥X∥ ,

where

cq =
π(q+1)/2

Γ ((q + 1) /2)
,

in which Γ (r) =
∫∞
0
tr−1e−tdt, r ̸= 0,−1,−2.... The integrals at 0 and ∞ are meant in the

principal value sense: limε→0

∫
Rq\{εB+ε−1Bc}, where B is the unit ball centered at 0 and Bc is the

complement of B.

Proof. See Székely and Rizzo (2005) for a proof.

Proof of Lemma 3.1 . By Cauchy-Schwarz inequality,∫
Rq

|h (β, τ )|2ω (dτ ) =

∫
Rq

|E [(εt − E (εt)) (exp (i ⟨τ ,Xt⟩)− E exp (i ⟨τ ,Xt⟩))]|2ω (dτ )

≤ E
[
(εt − E (εt))

2]E ∥∥Xt −X+
t

∥∥ <∞.
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Now

|h (β, τ )|2 = E [(εt − E (εt)) exp (i ⟨τ ,Xt⟩)]E [(εt − E (εt)) exp (−i ⟨τ ,Xt⟩)]

= −E
[
(εt − E (εt))

(
ε+t − E (εt)

) (
1− exp

(
i
〈
τ ,Xt −X+

t

〉))]
.

Then by Fubini’s Theorem and Lemma 9.1, we obtain (8).

Proof of Proposition 3.1 . We prove the case that q = ∞ with the understanding that the

inner product ⟨·, ·⟩ and norm ∥·∥ are defined on R∞. It is noted that the separable Hilbert space

H = (R∞, ⟨·, ·⟩) is of strong negative type, therefore, by Theorem 3.16 and Proposition 3.1 in

Lyons (2013), there exists an embedding ϕ : R∞ → H such that ∥X−X+∥ = ∥ϕ (X)− ϕ (X+)∥2,

and αϕ (µ) =
∫
ϕ (x) dµ (x) is injective on the set of signed measures µ on R∞ such that |µ| has

a finite first moment i.e.,
∫
∥x− o∥ d |µ| (x) <∞, for some o ∈ R∞. Also note

Obj (β) = −E
[
(εt − E (εt))

(
ε+t − E (εt)

) ∥∥Xt −X+
t

∥∥]
= −E

[
(εt − E (εt))

(
ε+t − E (εt)

)
dµ
(
Xt,X

+
t

)]
,

where dµ
(
Xt,X

+
t

)
=
∥∥Xt −X+

t

∥∥ − EX+
t

∥∥Xt −X+
t

∥∥ − EXt

∥∥Xt −X+
t

∥∥ + E
∥∥Xt −X+

t

∥∥. Then

by Proposition 3.5 in Lyons (2013),

Obj (β) = 2E
[
(εt − E (εt))

(
ε+t − E (εt)

) 〈
ϕ (Xt)− αϕ (µ) , ϕ

(
X+
t

)
− αϕ (µ)

〉]
= 2 ∥E [(εt − E (εt)) (ϕ (Xt)− αϕ (µ))]∥2 ≥ 0.

On the other hand,

Obj (β0) = −E
[
(ε0t − E (ε0t))

(
ε+0t − E (ε0t)

) ∥∥Xt −X+
t

∥∥] = 0,

implying E [(ε0t − E (ε0t)) (ϕ (Xt)− αϕ (µ))] = 0, which can be further simplified as

E [ε0tϕ (Xt)] = 0.

For any Borel set B ⊆ R∞, define the signed measure

µ (B) = E [ε0t1B (Xt)] .
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It is clear that |µ (B)| has a finite first moment. Then we have

αϕ (µ (B)) = E [ε0tϕ (Xt)] = 0.

Then this implies µ (B) = 0 by the injectivity of αϕ (µ), i.e.,

E [ε0t1B (Xt)] = 0.

This implies that

E [ε0t|Xt] = 0 a.s..

From another direction, clearly, E (ε0t|Xt) = 0 a.s. impliesE (ε0t) = 0 and E
[
ε0tε

+
0t

∥∥Xt −X+
t

∥∥] =
0, for a fixed q or q = ∞.

The following Lemmas 9.2 to 9.6 further give some important results regarding integrals

involving the non-integrable weighting function, which are useful in the proof of consistency and

asymptotic normality of WCIV and WCIVF. Let

Ẑt (τ ) = W̃t exp (i ⟨τ ,Xt⟩) ,

Zt (τ ) = (Wt − µW ) exp (i ⟨τ ,Xt⟩) ,

where µW = E (Wt), W̃t = Wt − µ̂W , µ̂W = 1
n

∑n
t=1 Wt.

Lemma 9.2 Let Wt ∈ Rp, Xt ∈ Rq. If (W′
t,X

′
t)

′ is i.i.d., and E ∥Wt∥2 < ∞, E ∥Xt∥2 < ∞,

then ∫
Rq

1

n

n∑
t=1

Ẑt (τ )ω (dτ )
p→
∫
Rq

E [Zt (τ )]ω (dτ ) . (20)

Proof. To prove (20), define the region D (δ) = {τ : δ ≤ ∥τ∥ ≤ 1/δ} with δ ∈ (0, 1). For any

fixed δ ∈ (0, 1), ω (τ ) is bounded on D (δ). Hence by weak law of large number (WLLN) and

the continuous mapping theorem it follows that∫
D(δ)

1

n

n∑
t=1

Ẑt (τ )ω (dτ )
p→
∫
D(δ)

E [Zt (τ )]ω (dτ ) .

It is obvious that
∫
D(δ)

1
n

∑n
t=1 Ẑt (τ )ω (dτ ) converges in probability to

∫
D(δ)

E [Zt (τ )]ω (dτ )

when δ tends to zero.
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Now it remains to show that

lim
δ→0

lim sup
n→∞

∥∥∥∥∥
∫
Rq

1

n

n∑
t=1

Ẑt (τ )ω (dτ )−
∫
D(δ)

1

n

n∑
t=1

Ẑt (τ )ω (dτ )

∥∥∥∥∥ = 0 in probability.

For each δ ∈ (0, 1), by triangle inequality,∥∥∥∥∥
∫
Rq

1

n

n∑
t=1

Ẑt (τ )ω (dτ )−
∫
D(δ)

1

n

n∑
t=1

Ẑt (τ )ω (dτ )

∥∥∥∥∥
=

∥∥∥∥∥
∫
∥τ∥<δ

1

n

n∑
t=1

Ẑt (τ )ω (dτ ) +

∫
∥τ∥>1/δ

1

n

n∑
t=1

Ẑt (τ )ω (dτ )

∥∥∥∥∥
≤

∥∥∥∥∥
∫
∥τ∥<δ

1

n

n∑
t=1

W̃t [1− exp (i ⟨τ ,Xt⟩)]ω (dτ )

∥∥∥∥∥
+

∥∥∥∥∥
∫
∥τ∥>1/δ

1

n

n∑
t=1

W̃t [1− exp (i ⟨τ ,Xt⟩)]ω (dτ )

∥∥∥∥∥
:= An1 + An2.

By triangle inequality,

An1 =

∥∥∥∥∥ 1n
n∑
t=1

W̃t

∫
∥τ∥<δ

[1− exp (i ⟨τ ,Xt⟩)]ω (dτ )

∥∥∥∥∥
≤ 1

n

n∑
t=1

∥∥∥∥Wt

∫
∥τ∥<δ

[1− exp (i ⟨τ ,Xt⟩)]ω (dτ )

∥∥∥∥
+

∥∥∥∥∥
(
1

n

n∑
t=1

Wt

)
1

n

n∑
t=1

∫
∥τ∥<δ

[1− exp (i ⟨τ ,Xt⟩)]ω (dτ )

∥∥∥∥∥
p→ E

∥∥∥∥Wt

∫
∥τ∥<δ

[1− exp (i ⟨τ ,Xt⟩)]ω (dτ )

∥∥∥∥
+

∥∥∥∥EWtE

∫
∥τ∥<δ

[1− exp (i ⟨τ ,Xt⟩)]ω (dτ )

∥∥∥∥ .
Since E

(∫
Rq [1− exp (i ⟨τ ,Xt⟩)]ω (dτ )

)
= cqE ∥Xt∥ <∞, then

lim
δ→0

E

(∫
∥τ∥<δ

[1− exp (i ⟨τ ,Xt⟩)]ω (dτ )

)
= 0.

By Cauchy-Schwarz inequality,

E

∥∥∥∥Wt

∫
∥τ∥<δ

[1− exp (i ⟨τ ,Xt⟩)]ω (dτ )

∥∥∥∥ ≤
(
E ∥Wt∥2

)1/2(
E

∥∥∥∥∫
∥τ∥<δ

[1− exp (i ⟨τ ,Xt⟩)]ω (dτ )

∥∥∥∥2
)1/2

.
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Similarly, E
∣∣∫

Rq [1− exp (i ⟨τ ,Xt⟩)]ω (dτ )
∣∣2 = c2qE ∥Xt∥2 <∞,

lim
δ→0

E

∥∥∥∥∫
∥τ∥<δ

[1− exp (i ⟨τ ,Xt⟩)]ω (dτ )

∥∥∥∥2 = 0.

We have

lim
δ→0

lim sup
n→∞

An1 = 0 in probability.

Similarly, we have

lim
δ→0

lim sup
n→∞

An2 = 0 in probability.

We conclude that (20) holds.

In Lemma 9.3, the focus is on the process

Bpn (τ ) =
1√
n

n∑
t=1

Ẑt (τ ) , τ ∈Rq.

It is convenient to establish the weak convergence ofBpn (τ ) in a Hilbert space. By this approach,

the i.i.d. conditions can be relaxed to a weakly stationary time series process conveniently.

Specifically, for a fixed δ, ω (·) is integrable on D (δ), therefore, denote υ as the product measure

of ω (·) on D (δ), i.e., dυ (τ ) = ω (dτ ) on D (δ). Then we consider Bpn (τ ) as a random element

in the Hilbert space L2 (D (δ) , υ) of all square-integrable q dimensional functions (with respect

to the measure υ) with the inner product

⟨f ,g⟩H(δ) =

∫
D(δ)

f (τ)′ gc (τ)ω (dτ ) .

L2 (D (δ) , υ) is endowed with the natural Borel σ-field induced by the norm ∥f∥H(δ) = ⟨f , f⟩1/2H(δ).

If Z is a L2 (D (δ) , υ)-valued random element and has a probability νZ , we say Z has mean m

and E
(
⟨Z,h⟩H(δ)

)
= ⟨m,h⟩H(δ) for any h ∈ L2 (D (δ) , υ). If E ∥Z∥2H(δ) < ∞ and Z has zero

mean, then the covariance operator of Z (or νZ), CZ (·) say, is a continuous, linear, symmetric

positive definite operator from L2 (D (δ) , υ) to L2 (D (δ) , υ), defined by

CZ (h) = E
[
⟨Z,h⟩H(δ) Z

]
.

An operator s on a Hilbert space is called nuclear if it can be represented as s(h) =
∑∞

j=1 lj ⟨h, fj⟩H(δ) fj,

where {fj} is an orthonormal basis of the Hilbert space and {lj} is a real sequence, such that
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∑∞
j=1 |lj| <∞. It is easy to show, see, e.g., Bosq (2000), that the covariance operator CZ(·) is a

nuclear operator, provided that E∥Z∥2H(δ) <∞.

Lemma 9.3 Let Wt ∈ Rp, Xt ∈ Rq. If (W′
t,X

′
t)

′ is i.i.d., E (Wt|Xt) = µW , and E ∥Wt∥2 <

∞, E ∥Xt∥2 <∞, then

Bpn (τ ) ⇒ Bp (τ ) , (21)

where ⇒ denotes weak convergence in L2 (D (δ) , υ), Bp (·) denotes a zero-mean complex valued

Gaussian process with a covariance structure given by

Λp (τ , ς) = E [WtW
′
t exp (i ⟨τ − ς,Xt⟩)]− E (Wt)E (W′

t)E [exp (i ⟨τ − ς,Xt⟩)]

+ [E (WtW
′
t) + E (Wt)E (W′

t)]E [exp (i ⟨τ ,Xt⟩)]E [exp (−i ⟨ς,Xt⟩)]

− E [WtW
′
t exp (i ⟨τ ,Xt⟩)]E [exp (−i ⟨ς,Xt⟩)]− E [WtW

′
t exp (−i ⟨ς,Xt⟩)]E [exp (i ⟨τ ,Xt⟩)] ,

for τ , ς ∈ D (δ).

Proof. To prove (21), we show Bpn (τ ) is tight by Theorem 2.1 in Politis and Romano (1994).

Firstly

E
[
Ẑt (τ )

]
=
n− 1

n
E [Zt (τ )] = 0.

For a fixed δ, by Cauchy-Schwarz inequality, the fact that ∥exp (i ⟨τ ,Xt⟩)∥2H(δ) is bounded, and

∥a+ b∥2H(δ) ≤ 2 ∥a∥2H(δ) + 2 ∥b∥2H(δ),

E

(∥∥∥Ẑn (τ )∥∥∥2
H(δ)

)
≤ E

(∥∥∥W̃t

∥∥∥2
H(δ)

∥exp (i ⟨τ ,Xt⟩)∥2H(δ)

)

≤ CE

∥∥∥∥∥Wt−
1

n

n∑
t=1

Wt

∥∥∥∥∥
2

H(δ)


≤ 2CE

∥Wt∥2H(δ) +

∥∥∥∥∥ 1n
n∑
t=1

Wt

∥∥∥∥∥
2

H(δ)


≤ CE ∥Wt∥2 ≤ ∞.
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For any integer K > 1, by WLLN, Ẑ1 (τ ) , ..., ẐK (τ )
p→ Z1 (τ ) , ...,ZK (τ ).

lim
n→∞

E
〈
Ẑ1 (τ ) , ẐK (τ )

〉
H(δ)

= lim
n→∞

E ⟨Z1 (τ )− (µ̂W − µW ) exp (i ⟨τ ,X1⟩) ,ZK (τ )− (µ̂W − µW ) exp (i ⟨τ ,XK⟩)⟩H(δ)

= E ⟨Z1 (τ ) ,ZK (τ )⟩H(δ) − lim
n→∞

E ⟨Z1 (τ ) , (µ̂W − µW ) exp (i ⟨τ ,XK⟩)⟩H(δ)

− lim
n→∞

E ⟨ZK (τ ) , (µ̂W − µW ) exp (i ⟨τ ,X1⟩)⟩H(δ)

+ lim
n→∞

E ⟨(µ̂W − µW ) exp (i ⟨τ ,X1⟩) , (µ̂W − µW ) exp (i ⟨τ ,XK⟩)⟩H(δ)

= 0.

Since, for example,

E
(
⟨Z1 (τ ) , (µ̂W − µW ) exp (i ⟨τ ,XK⟩)⟩H(δ)

)
=

∫
D(δ)

E
[
Z1 (τ )

′ (µ̂W − µW ) exp (−i ⟨τ ,XK⟩)
]
ω (dτ )

=

∫
D(δ)

E

[
(W1 − µW )′ exp (i ⟨τ ,X1⟩)

1

n

n∑
t=1

(Wt − µW ) exp (−i ⟨τ ,XK⟩)

]
ω (dτ )

=
1

n

∫
D(δ)

E
[
∥W1 − µW∥2 exp (i ⟨τ ,X1 −XK⟩)

]
ω (dτ )

→ 0, as n→ ∞.

Therefore

lim
n→∞

n∑
K=1

E
〈
Ẑ1 (τ ) , ẐK (τ )

〉
H(δ)

= E
(
∥Z1 (τ )∥2H(δ)

)
<∞.

Further, for any h ∈ H (δ),

σ2
n,h = V ar

(
⟨Bpn (τ ) ,h⟩H(δ)

)
=

1

n
V ar

〈 n∑
t=1

Zt (τ )− (µ̂W − µW )
n∑
t=1

exp (i ⟨τ ,Xt⟩) ,h

〉
H(δ)


→ V ar

(
⟨Z1 (τ ) ,h⟩H(δ)

)
, as n→ ∞.

Then we conclude Bpn (τ ) is tight. Further, for any integer K > 1, Bpn (τ 1) , ...,Bpn (τK) are

asymptotically normally distributed by the central limit theorem (CLT) and Slutskey theorem.
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Then the weak convergence follows. Further

E
[
Bpn (τ )B

c
pn (ς)

′] = (n− 1

n

)2

E [WtW
′
t exp (i ⟨τ − ς,Xt⟩)]

+
n− 1

n
E [exp (i ⟨τ − ς,Xt⟩)]

(
1

n
E (WtW

′
t)− E (Wt)E (W′

t)

)
+
n− 1

n

(
E (Wt)E (W′

t) +
n− 2

n
E (WtW

′
t)

)
E [exp (i ⟨τ ,Xt⟩)]E [exp (−i ⟨ς,Xt⟩)]

−
(
n− 1

n

)2

E [WtW
′
t exp (i ⟨τ ,Xt⟩)]E [exp (−i ⟨ς,Xt⟩)]

−
(
n− 1

n

)2

E [exp (i ⟨τ ,Xt⟩)]E [WtW
′
t exp (−i ⟨ς,Xt⟩)] .

Then we have

Λp (τ , ς) = E [WtW
′
t exp (i ⟨τ − ς,Xt⟩)]− E (Wt)E (W′

t)E [exp (i ⟨τ − ς,Xt⟩)]

+ [E (WtW
′
t) + E (Wt)E (W′

t)]E [exp (i ⟨τ ,Xt⟩)]E [exp (−i ⟨ς,Xt⟩)]

− E [WtW
′
t exp (i ⟨τ ,Xt⟩)]E [exp (−i ⟨ς,Xt⟩)]− E [WtW

′
t exp (−i ⟨ς,Xt⟩)]E [exp (i ⟨τ ,Xt⟩)]

for τ , ς ∈ D (δ).

Lemma 9.4 Let Wt ∈ Rp, Xt ∈ Rq. If (W′
t,X

′
t)

′ is i.i.d., and E ∥Wt∥2 < ∞, E ∥Xt∥2 < ∞.

Then ∫
Rq

∥E (Zt (τ ))∥2ω (dτ ) = −E
[
(Wt − µW )′

(
W+

t − µW

) ∥∥Xt −X+
t

∥∥] ,
∫
Rq

∥∥∥∥∥ 1n
n∑
t=1

Ẑt (τ )

∥∥∥∥∥
2

ω (dτ ) = − 1

n2

∑
j,k

W̃′
jW̃k ∥Xj −Xk∥ .

Further,

1

n2

∑
j,k

W̃′
jW̃k ∥Xj −Xk∥

p→ E
[
(Wt − µW )′

(
W+

t − µW

) ∥∥Xt −X+
t

∥∥] . (22)

If E (Wt|Xt) = µW , then

1

n

∑
j,k

W̃′
jW̃k ∥Xj −Xk∥ = Op (1) . (23)

Proof. The analytical forms of
∫
Rq ∥E (Zt (τ ))∥2ω (dτ ) and

∫
Rq

∥∥∥ 1
n

∑n
t=1 Ẑt (τ )

∥∥∥2ω (dτ ) are

proved by repeatedly applying Lemma 9.1. The proof of (22) follows the proof of Theorem 3 in
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Shao and Zhang (2014). To prove (23), we need to show∫
Rq

∥Bnp (τ )∥2ω (dτ )
d→
∫
Rq

∥Bp (τ )∥2ω (dτ ) .

For a given δ, by Lemma 9.3 and the continuous mapping theorem, we have∫
D(δ)

∥Bpn (τ )∥2ω (dτ )
d→
∫
D(δ)

∥Bp (τ )∥2ω (dτ ) .

It is obvious that
∫
D(δ)

∥Bnp (τ )∥2 ω (dτ ) converges in distribution to
∫
Rq ∥Bp (τ )∥2 ω (dτ ) when

δ tends to zero.

For a given δ, following the proof of Theorem 4 in Shao and Zhang (2014), we have

lim
δ→0

lim sup
n→∞

E

∣∣∣∣∫
∥τ∥<δ

∥Bpn (τ )∥2 ω (dτ )

∣∣∣∣ = 0,

lim
δ→0

lim sup
n→∞

E

∣∣∣∣∫
∥τ∥>1/δ

∥Bpn (τ )∥2 ω (dτ )

∣∣∣∣ = 0.

Therefore

lim
δ→0

lim sup
n→∞

E

∣∣∣∣∫
Rq

∥Bpn (τ )∥2 ω (dτ )−
∫
D(δ)

∥Bpn (τ )∥2 ω (dτ )

∣∣∣∣ = 0.

Then by Markov’s inequality,

lim
δ→0

lim sup
n→∞

∣∣∣∣∫
Rq

∥Bpn (τ )∥2 ω (dτ )−
∫
D(δ)

∥Bpn (τ )∥2 ω (dτ )

∣∣∣∣ = 0 in probability.

Finally, by Theorem 8.6.2 of Resnick (1999), we conclude that (23) holds

Lemma 9.5 Let Wt ∈ Rp, Xt ∈ Rq. If (W′
t,X

′
t)

′ is i.i.d., and E ∥Wt∥2 < ∞, E ∥Xt∥2 < ∞.

Then ∫
Rq

E [Zt (τ )]E [Zct (τ )]
′ ω (dτ ) = −E

[
(Wt − µW )

(
W+

t − µW

)′ ∥∥Xt −X+
t

∥∥] ,
∫
Rq

1

n2

n∑
t=1

Ẑt (τ )

(
n∑
t=1

Ẑct (τ )

)′

ω (dτ ) = − 1

n2

∑
j,k

W̃jW̃
′
k ∥Xj −Xk∥ .

Further,

1

n2

∑
j,k

W̃jW̃
′
k ∥Xj −Xk∥

p→ E
[
(Wt − µW )

(
W+

t − µW

)′ ∥∥Xt −X+
t

∥∥] . (24)
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If E (Wt|Xt) = µW , then∫
Rq

1

n

n∑
t=1

Ẑt (τ )

(
n∑
t=1

Ẑct (τ )

)′

ω (dτ ) = Op (1) . (25)

Proof. The analytical forms are proved by repeatedly applying Lemma 9.1. The proof of (24)

is analogous to the one for proving (22) in Lemma 9.4. To prove (25), we need to show∫
Rq

1

n

n∑
t=1

Ẑt (τ )

(
n∑
t=1

Ẑct (τ )

)′

ω (dτ )
d→
∫
Rq

Bp (τ )B
c
p (τ )

′ω (dτ ) .

Again, by Lemma 9.3 and the continuous mapping theorem, for a given δ ∈ (0, 1), we have∫
D(δ)

1

n

n∑
t=1

Ẑt (τ )

(
n∑
t=1

Ẑct (τ )

)′

ω (dτ )
d→
∫
D(δ)

Bp (τ )B
c
p (τ )

′ω (dτ ) .

When j = k, from Lemma 9.4, we have

lim
δ→0

lim sup
n→∞

E

∫
∥τ∥<δ

1

n

∣∣∣∣∣
n∑
t=1

Ẑjt (τ )

∣∣∣∣∣
2

ω (dτ )

 = 0, for j = 1, ..., p,

lim
δ→0

lim sup
n→∞

E

∫
∥τ∥>1/δ

1

n

∣∣∣∣∣
n∑
t=1

Ẑjt (τ )

∣∣∣∣∣
2

ω (dτ )

 = 0, for j = 1, ..., p,

where Ẑjt (τ ) is the jth element of Ẑt (τ ). For j, k = 1, ..., p, j ̸= k, by Cauchy-Schwarz

inequality,

E

∣∣∣∣∣
∫
∥τ∥<δ

1

n

n∑
t=1

Ẑjt (τ )
n∑
t=1

Ẑc
kt (τ )ω (dτ )

∣∣∣∣∣
≤ E


∫

∥τ∥<δ

1

n

∣∣∣∣∣
n∑
t=1

Ẑjt (τ )

∣∣∣∣∣
2

ω (dτ )

1/2∫
∥τ∥<δ

1

n

∣∣∣∣∣
n∑
t=1

Ẑkt (τ )

∣∣∣∣∣
2

ω (dτ )

1/2


≤

E
∫

∥τ∥<δ

1

n

∣∣∣∣∣
n∑
t=1

Ẑjt (τ )

∣∣∣∣∣
2

ω (dτ )

1/2 E
∫

∥τ∥<δ

1

n

∣∣∣∣∣
n∑
t=1

Ẑkt (τ )

∣∣∣∣∣
2

ω (dτ )

1/2

.

So, by the dominated convergence theorem,

lim
δ→0

lim sup
n→∞

E

∣∣∣∣∣
∫
∥τ∥<δ

1

n

n∑
t=1

Ẑjt (τ )
n∑
t=1

Ẑc
kt (τ )ω (dτ )

∣∣∣∣∣ = 0.
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Similarly we can obtain

lim
δ→0

lim sup
n→∞

E

∣∣∣∣∣
∫
∥τ∥>1/δ

1

n

n∑
t=1

Ẑjt (τ )
n∑
t=1

Ẑc
kt (τ )ω (dτ )

∣∣∣∣∣ = 0.

Then for j, k = 1, ..., p,

lim
δ→0

lim sup
n→∞

E

∣∣∣∣∣
∫
Rq

1

n

n∑
t=1

Ẑjt (τ )
n∑
t=1

Ẑc
kt (τ )ω (dτ )−

∫
D(δ)

1

n

n∑
t=1

Ẑjt (τ )
n∑
t=1

Ẑc
kt (τ )ω (dτ )

∣∣∣∣∣ = 0.

Then by Markov’s inequality, j, k = 1, ..., n,

lim
δ→0

lim sup
n→∞

(∫
Rq

1

n

n∑
t=1

Ẑjt (τ )
n∑
t=1

Ẑc
kt (τ )ω (dτ )−

∫
D(δ)

1

n

n∑
t=1

Ẑjt (τ )
n∑
t=1

Ẑc
kt (τ )ω (dτ )

)
= 0

in probability. Then by the continuous mapping theorem,

lim
δ→0

lim sup
n→∞

(∫
Rq

1

n

n∑
t=1

Ẑt (τ )

(
n∑
t=1

Ẑct (τ )

)′

ω (dτ )−
∫
D(δ)

1

n

n∑
t=1

Ẑt (τ )

(
n∑
t=1

Ẑct (τ )

)′

ω (dτ )

)
= 0

in probability. Finally, by Theorem 8.6.2 of Resnick (1999), we conclude that (25) holds.

In the following Lemma, we give similar results without proving them.

Lemma 9.6 Let Wt ∈ Rp, Xt ∈ Rq. If (W′
t,X

′
t)

′ is i.i.d., and E ∥Wt∥2 < ∞, E ∥Xt∥2 < ∞,

E ∥f (Xt)∥2 < ∞. Let Ft (τ ) = (f (Xt)− µf ) exp (i ⟨τ ,Xt⟩) and F̂t (τ ) = f̃ (Xt) exp (i ⟨τ ,Xt⟩).

Then ∫
Rq

E [Zt (τ )]E [Fc
t (τ )]

′ ω (dτ ) = −E
[
(Wt − µW )

(
f
(
X+
t

)
− µf

)′ ∥∥Xt −X+
t

∥∥] ,
∫
Rq

1

n2

n∑
t=1

Ẑt (τ )
n∑
t=1

F̂c
t (τ )

′ω (dτ ) = − 1

n2

∑
j,k

W̃j f̃ (Xk)
′ ∥Xj −Xk∥ .

Further,

1

n2

∑
j,k

W̃j f̃ (Xk)
′ ∥Xj −Xk∥

p→ E
[
(Wt − µW )

(
f
(
X+
t

)
− µf

)′ ∥∥Xt −X+
t

∥∥] .
If E (Wt|Xt) = µW , then∫

Rq

1

n

n∑
t=1

Ẑt (τ )
n∑
t=1

F̂c
t (τ )

′ ω (dτ ) = Op (1) . (26)

The following lemma is Lemma A0 from Hansen et al. (2008).
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Lemma 9.7 If Assumptions 1 is satisfied,
∥∥∥R′

n

(
β̂ − β0

)
/rn

∥∥∥2 /(1 + ∥∥∥β̂∥∥∥2) p→ 0, then

∥∥∥R′
n

(
β̂ − β0

)
/rn

∥∥∥ p→ 0.

Lemma 9.8 Let ε̃0j = ε0j − 1
n

∑n
t=1 ε0t, under Assumptions 1-2,

1

nr2n

∑
j,k

ε̃0jDjkε̃0k = op (1) ,

1

n

∑
j,k

R−1
n ỸjDjkỸ

′
kR

−1′
n =

1

n2

∑
j,k

f̃ (Xj)Djk f̃ (Xk)
′ + op (1) .

Proof. Note E (ε0t|Xt) = 0, Djk = −∥Xj −Xk∥, then by Lemma 9.4,

1

n

∑
j,k

ε̃0jDjkε̃0k = Op (1) .

Note rn = min1≤j≤q rj,n → ∞, so we have

1

nr2n

∑
j,k

ε̃0jDjkε̃0k =
1

r2n
Op (1) = op (1) .

1

n

∑
j,k

R−1
n ỸjDjkỸ

′
kR

−1′
n =

1

n

∑
j,k

(
f̃ (Xj)√

n
+R−1

n η̃j

)
Djk

(
f̃ (Xk)

′
√
n

+ η̃′
kR

−1′
n

)

=
1

n2

∑
j,k

f̃ (Xj)Djk f̃ (Xk)
′ +

1

n

∑
j,k

f̃ (Xj)Djkη̃
′
k

R−1′
n√
n

+
R−1
n√
n

1

n

∑
j,k

η̃jDjk f̃ (Xk)
′ +R−1

n

1

n

∑
j,k

η̃jDjkη̃
′
kR

−1′
n .

As E (ηt|Xt) = 0, then 1
n

∑
j,k f̃ (Xj)Djkη̃

′
k = Op (1),

1
n

∑
j,k η̃jDjk f̃ (Xk)

′ = Op (1) by Lemma

9.6; 1
n

∑
j,k η̃jDjkη̃

′
k = Op (1) by Lemma 9.5. Further R−1

n = op (1) by Assumption 1. So

1

n

∑
j,k

R−1
n ỸjDjkỸ

′
kR

−1′
n =

1

n2

∑
j,k

f̃ (Xj)Djk f̃ (Xk)
′ +Op (1) op (1) +Op (1) op (1) +Op (1) op (1)

=
1

n2

∑
j,k

f̃ (Xj)Djk f̃ (Xk)
′ + op (1) .
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Lemma 9.9 If Assumptions 1-2 are satisfied, then for β̂ = β̂WCIV ,

R′
n

(
β̂ − β0

)
/rn

p→ 0.

Proof. Following the same arguments as in the proof of Lemma A3 in Hausman et al. (2012),

w.p.a.1 for all β, we have

C ≤ 1

n

(
ỹ − Ỹβ

)′ (
ỹ − Ỹβ

)
≤ C

(
1 + ∥β∥2

)
.

On the other hand,

1

nr2n

(
ỹ − Ỹβ

)′
D
(
ỹ − Ỹβ

)
=

1

nr2n

∑
j,k

(
ỹj − Ỹ′

jβ
)′
Djk

(
ỹk − Ỹ′

kβ
)

=
1

nr2n

∑
j,k

(
Ỹ′
j (β0 − β) + ε̃0j

)′
Djk

(
Ỹ′
k (β0 − β) + ε̃0k

)
=

1

nr2n
(R′

n (β0 − β))
′

(∑
j,k

R−1
n ỸjDjkỸ

′
kR

−1′
n

)
R′
n (β0 − β)

+
1

nr2n

∑
j,k

ε̃0jDjkε̃0k + (β0 − β)′
2

nr2n

∑
j,k

ỸjDjkε̃0k.

Note

1

nr2n

∑
j,k

ỸkDjkε̃0j =
1

nr2n

∑
j,k

Rnf̃ (Xj)√
n

Djkε̃0k +
1

nr2n

∑
j,k

η̃jDjkε̃0k.

Since E
(
(ε0t,η

′)′ |Xt

)
= 0, by Lemma 9.5, 1

n

∑
j,k η̃jDjkε̃0k = Op (1), by Lemma 9.6, 1

n

∑
j,k f̃ (Xj)Djkε̃0k =

Op (1). Then we have

1

nr2n

∑
j,k

ỸkDjkε̃0j = op (1) .

By Lemma 9.8, 1
nr2n

∑
j,k ε̃0jDjkε̃0k = op (1). By Assumption 1, w.p.a.1, 1

n2

∑
j,k f̃ (Xj)Djk f̃ (Xk)

′ ≥

CIp, we have, w.p.a.1,

1

nr2n

(
ỹ − Ỹβ

)′
D
(
ỹ − Ỹβ

)
=

1

r2n
(R′

n (β0 − β))
′

(
1

n

∑
j,k

R−1
n ỸjDjkỸ

′
kR

−1′
n

)
R′
n (β0 − β) + op (1)

≥ C ∥R′
n (β − β0) /rn∥

2
.
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Let

Q̂ (β) =
1

r2n

(
ỹ − Ỹβ

)′
D
(
ỹ − Ỹβ

)
(
ỹ − Ỹβ

)′ (
ỹ − Ỹβ

) .

Then by Lemma 9.8, and 1
n

∑n
j=1 ε̃

2
0j = Op (1), we have

∣∣∣Q̂ (β0)
∣∣∣ = ∣∣∣∣∣

1
r2nn

∑
j,k ε̃0jDjkε̃0k

1
n

∑n
j=1 ε̃

2
0j

∣∣∣∣∣ p→ 0. (27)

Since β̂WCIV = argminβ Q̂ (β), we have Q̂
(
β̂WCIV

)
≤ Q̂ (β0). Therefore w.p.a.1

0 ≤

∥∥∥R′
n

(
β̂WCIV − β0

)
/rn

∥∥∥2
1 +

∥∥∥β̂WCIV

∥∥∥2 ≤ CQ̂
(
β̂WCIV

)
≤ CQ̂ (β0)

p→ 0,

implying ∥∥∥R′
n

(
β̂WCIV − β0

)
/rn

∥∥∥2
1 +

∥∥∥β̂WCIV

∥∥∥2 p→ 0.

Then by Lemma 9.7, we arrive at the conclusion.

Lemma 9.10 If Assumptions 1-3 are satisfied, R′
n

(
β̂ − β0

)
/rn

p→ 0, then

(
ỹ − Ỹβ̂

)′
D
(
ỹ − Ỹβ̂

)
(
ỹ − Ỹβ̂

)′ (
ỹ − Ỹβ̂

) = op
(
r2n
)
.

Proof. Firstly, by WLLN, we have

1

n

(
ỹ − Ỹβ̂

)′ (
ỹ − Ỹβ̂

)
= Op (1) .

1

nr2n

(
ỹ − Ỹβ̂

)′
D
(
ỹ − Ỹβ̂

)
=

1

nr2n

∑
j,k

(
ỹj − Ỹ′

jβ̂
)′
Djk

(
ỹk − Ỹ′

kβ̂
)

=
(
R′
n

(
β0 − β̂

)
/rn

)′( 1

n

∑
j,k

R−1
n ỸjDjkỸ

′
kR

−1′
n

)
R′
n

(
β0 − β̂

)
/rn

+
1

nr2n

∑
j,k

ε̃0jDjkε̃0k +
(
rnR

′−1
n

)
R′
n

(
β0 − β̂

)
/rn

2

nr2n

∑
j,k

ỸjDjkε̃0k.

By Lemma 9.8, R′
n

(
β̂ − β0

)
/rn

p→ 0, ∥R−1
n ∥ = O (r−1

n ), and 1
nr2n

∑
j,k ỸkDjkε̃0j = op (1), we
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have

1

n

(
ỹ − Ỹβ̂

)′
D
(
ỹ − Ỹβ̂

)
= op

(
r2n
)
.

Then by the continuous mapping theorem, the result follows.

Proof of Theorem 4.1. Note firstly when R′
n

(
β̂ − β0

)
/rn

p→ 0, then by ϑmin (RnR
′
n/r

2
n) ≥

ϑmin

(
R̃R̃

′)
> 0, we have∥∥∥R′

n

(
β̂ − β0

)
/rn

∥∥∥ ≥ ϑmin

(
RnR

′
n/r

2
n

) ∥∥∥β̂ − β0

∥∥∥ ≥ C
∥∥∥β̂ − β0

∥∥∥ ,
implying β̂

p→ β0. Therefore, for WCIV, this follows from Lemma 9.9. For WCIVF, note that

firstly

λ̂WCIV =

(
ỹ − Ỹβ̂WCIV

)′
D
(
ỹ − Ỹβ̂WCIV

)
(
ỹ − Ỹβ̂WCIV

)′ (
ỹ − Ỹβ̂WCIV

) = op
(
r2n
)
.

Then

λ̂WCIV F = op
(
r2n
)
,

and

R′
n

(
β̂WCIV F − β0

)
/rn

= R′
n

[
Ỹ′
(
D− λ̂WCIV F In

)
Ỹ
]−1

Ỹ′
(
D− λ̂WCIV F In

)
ε̃0/rn

=

[
R−1
n

(
1

n

∑
j,k

ỸjDjkỸ
′
k −

1

n
λ̂WCIV F Ỹ

′Ỹ

)
R−1′
n

]−1

×R−1
n

(
1

n

∑
j,k

ỸjDjkε̃0k −
1

n
λ̂WCIV F Ỹ

′ε̃0

)
/rn.

Since Ỹ′Ỹ =Op (n), Ỹ
′ε̃0=Op (n), ∥R−1

n ∥ = O (r−1
n ), therefore

R−1
n

n
λ̂WCIV F Ỹ

′ỸR
−1′
n = O

(
r−1
n

)
O (1/n) op

(
r2n
)
Op (n)O

(
r−1
n

)
= op (1) ,

R−1
n

1

n
λ̂WCIV F Ỹ

′ε̃0/rn = O
(
r−1
n

)
O (1/n) op

(
r2n
)
Op (n)O

(
r−1
n

)
= op (1) .

R−1
n

1

n

∑
j,k

ỸjDjkε̃0k/rn =
1

n

∑
j,k

f̃ (Xj)√
n
Djkε̃0k/rn +R−1

n

1

n

∑
j,k

η̃jDjkε̃0k/rn

= op (1) + op (1) = op (1) .
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Further, by Lemma 9.8, we have

R′
n

(
β̂WCIV F − β0

)
/rn =

(
1

n2

∑
j,k

f̃ (Xj)Djk f̃ (Xk)
′ + op (1)

)−1

op (1) = op (1) .

Therefore, β̂WCIV F

p→ β0. Finally, by the continuous mapping theorem, α̂WCIV
p→ α0, α̂WCIV F

p→

α0.

Proof of Theorem 4.2. For β̂ = β̂WCIV or β̂WCIV F , λ̂ = λ̂WCIV or λ̂WCIV F ,

R′
n

(
β̂ − β0

)
= R′

n

[
Ỹ′
(
D− λ̂In

)
Ỹ
]−1

Ỹ′
(
D− λ̂In

)
ε̃0

=

[
R−1
n

(
1

n

∑
j,k

ỸjDjkỸ
′
k −

1

n
λ̂Ỹ′Ỹ

)
R−1′
n

]−1

×R−1
n

(
1

n

∑
j,k

ỸjDjkε̃0k −
1

n
λ̂Ỹ′ε̃0

)
,

R−1
n

n
λ̂Ỹ′ỸR

−1′
n = O

(
r−1
n

)
O (1/n) op

(
r2n
)
Op (n)O

(
r−1
n

)
= op (1) ,

R−1
n

1√
n
λ̂Ỹ′ε̃0 = R−1

n

1

n
λ̂
∑
j

Ỹj ε̃0j

=
1

n
λ̂

1√
n

∑
j

f̃ (Xj) ε̃0k +
1

n
λ̂R−1

n

∑
j

η̃j ε̃0j

= O (1/n) op
(
r2n
)
Op (1) +O

(
1/
√
n
)
op
(
r2n
)
O
(
r−1
n

)
Op (1)

= op (1) ,

since by CLT, 1√
n

∑
j η̃j ε̃0j = Op (1),

1√
n

∑
j f̃ (Xj) ε̃0j = Op (1), and rj,n =

√
n or rj,n/

√
n → 0

by Assumption 1. Therefore

R′
n

(
β̂ − β0

)
=

[
R−1
n

(
1

n

∑
j,k

ỸjDjkỸ
′
k

)
R−1′
n

]−1

R−1
n

1

n

∑
j,k

ỸjDjkε̃k + op (1) .

By Lemmas 9.8 and 9.5,

R−1
n

(
1

n

∑
j,k

ỸjDjkỸ
′
k

)
R−1′
n

p→ Π.
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We have

R′
n

(
β̂ − β0

)
= Π−1

(
1

n
√
n

∑
j,k

f̃ (Xj)Djkε̃0k +
R−1
n

n

∑
j,k

η̃jDjkε̃0k

)
+ op (1)

= Π−1

∫
Rq

1

n

n∑
j=1

F̂j (τ )B1n (τ )
cω (dτ ) + op (1)

=: Π−1An + op (1) ,

where

B1n (τ ) =
1√
n

n∑
k=1

ε̃0k exp (i ⟨τ ,Xk⟩) ,

because, by Lemma 9.5, 1
n

∑
j,k η̃jDjkε̃0k = Op (1), R

−1
n = o (1). By Lemma 9.4

B1n (τ ) ⇒ B1 (τ ) ,

where B1 (·) denotes a zero-mean complex valued Gaussian process with a covariance structure

given by

Λ1 (τ , ς) = E
[
ε20t exp (i ⟨τ − ς,Xt⟩)

]
+ E

(
ε20t
)
E [exp (i ⟨τ ,Xt⟩)]E [exp (−i ⟨ς,Xt⟩)]

− E
[
ε20t exp (i ⟨τ ,Xt⟩)

]
E [exp (−i ⟨ς,Xt⟩)]− E

[
ε20t exp (−i ⟨ς,Xt⟩)

]
E [exp (i ⟨τ ,Xt⟩)] ,

for τ , ς ∈ D (δ).

For a fixed δ, by Slutsky theorem and the continuous mapping theorem,∫
D(δ)

1

n

n∑
t=1

F̂t (τ )B1n (τ )
cω (dτ )

d→
∫
D(δ)

E [Ft (τ )]B1 (τ )
cω (dτ ) .
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Then in the same spirit of proving Lemma 9.5, by Cauchy-Schwarz inequality

E

∣∣∣∣∣
∫
∥τ∥<δ

1

n

n∑
t=1

F̂t (τ )B1n (τ )
cω (dτ )

∣∣∣∣∣
≤ E


∫

∥τ∥<δ

1

n2

∥∥∥∥∥
n∑
t=1

F̂t (τ )

∥∥∥∥∥
2

ω (dτ )

1/2(∫
∥τ∥<δ

|B1n (τ )|2ω (dτ )

)1/2


≤

E
∫

∥τ∥<δ

1

n2

∥∥∥∥∥
n∑
t=1

F̂t (τ )

∥∥∥∥∥
2

ω (dτ )

1/2(
E

(∫
∥τ∥<δ

|B1n (τ )|2ω (dτ )

))1/2

.

Then by the dominated convergence theorem,

lim
δ→0

lim sup
n→∞

E

∣∣∣∣∣
∫
∥τ∥<δ

1

n

n∑
t=1

F̂t (τ )B1n (τ )
cω (dτ )

∣∣∣∣∣ = 0.

Similarly we can obtain

lim
δ→0

lim sup
n→∞

E

∣∣∣∣∣
∫
∥τ∥>1/δ

1

n

n∑
t=1

F̂t (τ )B1n (τ )
cω (dτ )

∣∣∣∣∣ = 0,

so we conclude that

An
d→
∫
Rq

E [Ft (τ )]B1 (τ )
cω (dτ ) ,

where the integrated weighted Gaussian process follows a normal distribution with mean zero

and variance

V (θ0) =

∫
Rq

∫
Rq

E [Ft (τ )]E [Ft (−ς)]′ Λ1 (τ , ς)
cω (dτ )ω (dς) .

To derive the analytical form of V (θ0), we plug Λ1 (τ , ς)
c into V (θ0) and obtain

V (θ0) =

∫
Rq

∫
Rq

E [Ft (τ )]E [Ft (−ς)]′

×

 E [ε20t exp (−i ⟨τ − ς,Xt⟩)] + E (ε20t)E [exp (−i ⟨τ ,Xt⟩)]E [exp (i ⟨ς,Xt⟩)]

−E [ε20t exp (−i ⟨τ ,Xt⟩)]E [exp (i ⟨ς,Xt⟩)]− E [ε20t exp (i ⟨ς,Xt⟩)]E [exp (−i ⟨τ ,Xt⟩)]

ω (dτ )ω (dς)

=: V1 (θ0) +V2 (θ0)−V3 (θ0)−V4 (θ0) .
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By Fubini’s Theorem and Lemma 9.1,

V1 (θ0) =

∫
Rq

∫
Rq

E

 (f (X+
t

)
− µf

)
exp

(
i
〈
τ ,X+

t

〉) (
f
(
X++
t

)
− µf

)
exp

(
−i
〈
ς,X++

t

〉)
×ε20t exp (−i ⟨τ − ς,Xt⟩)

ω (dτ )ω (dς)

=

∫
Rq

∫
Rq

E

 ε20t
(
f
(
X+
t

)
− µf

)
exp

(
i
〈
τ ,X+

t −Xt

〉)
×
(
f
(
X++
t

)
− µf

)′
exp

(
i
〈
ς,Xt −X++

t

〉)
ω (dτ )ω (dς)

=

∫
Rq

∫
Rq

E

 ε20t
(
f
(
X+
t

)
− µf

) (
1− exp

(
i
〈
τ ,Xt −X+

t

〉))
×
(
f
(
X++
t

)
− µf

)′ (
1− exp

(
i
〈
ς,Xt −X++

t

〉))
ω (dτ )ω (dς)

= E

 ∫
Rq ε

2
0t

(
f
(
X+
t

)
− µf

) [
1− exp

(
i
〈
τ ,Xt −X+

t

〉)]
ω (dτ )

×
∫
Rq

(
f
(
X++
t

)
− µf

)′ [
1− exp

(
i
〈
ς,Xt −X++

t

〉)]
ω (dς)


= E

[
ε20t
(
f
(
X+
t

)
− µf

) (
f
(
X++
t

)
− µf

)′ ∥∥Xt −X+
t

∥∥∥∥Xt −X++
t

∥∥] .

V2 (θ0) =

∫
Rq

∫
Rq

 E [(f (Xt)− µf ) exp (i ⟨τ ,Xt⟩)]E [(f (Xt)− µf ) exp (−i ⟨ς,Xt⟩)]′

×E (ε20t)E [exp (−i ⟨τ ,Xt⟩)]E [exp (i ⟨ς,Xt⟩)]

ω (dτ )ω (dς)

= E
(
ε2t
) ∫

Rq

E
[
(f (Xt)− µf )

(
1− exp

(
i
〈
τ ,Xt −X+

t

〉))]
ω (dτ )

×
∫
Rq

E
[
(f (Xt)− µf )

′ (1− exp
(
i
〈
ς,X+

t −Xt

〉))]
ω (dς)

= E
(
ε20t
)
E
(
(f (Xt)− µf )

∥∥Xt −X+
t

∥∥)E ((f (Xt)− Ef (Xt))
′ ∥∥Xt −X+

t

∥∥) .

V3 (θ0) =

∫
Rq

∫
Rq

 E [(f (Xt)− µf ) exp (i ⟨τ ,Xt⟩)]E [(f (Xt)− µf ) exp (−i ⟨ς,Xt⟩)]′

×E [ε20t exp (−i ⟨τ ,Xt⟩)]E [exp (i ⟨ς,Xt⟩)]

ω (dτ )ω (dς)

=

∫
Rq

E
[
ε20t
(
f
(
X+
t

)
− µf

) (
1− exp

(
i
〈
τ ,Xt −X+

t

〉))]
ω (dτ )

×
∫
Rq

E
[
(f (Xt)− µf )

′ (1− exp
(
i
〈
ς,X+

t −Xt

〉))]
ω (dς)

= E
(
ε20t
(
f
(
X+
t

)
− µf

) ∥∥Xt −X+
t

∥∥)E ((f (Xt)− µf )
′ ∥∥Xt −X+

t

∥∥) .
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V4 (θ0) =

∫
Rq

∫
Rq

 E [(f (Xt)− µf ) exp (i ⟨τ ,Xt⟩)]E [(f (Xt)− µf ) exp (−i ⟨ς,Xt⟩)]′

E [ε20t exp (i ⟨ς,Xt⟩)]E [exp (−i ⟨τ ,Xt⟩)]

ω (dτ )ω (dς)

=

∫
Rq

E
[
(f (Xt)− µf )

(
1− exp

(
i
〈
τ ,Xt −X+

t

〉))]
ω (dτ )

×
∫
Rq

E
[
ε20t
(
f
(
X+
t

)
− µf

)′ (
1− exp

(
i
〈
ς,X+

t −Xt

〉))]
ω (dς)

= V3 (θ0)
′ .

Proof of Theorem 4.3. For θ̂ = θ̂WCIV or θ̂WCIV F , λ̂=λ̂WCIV or λ̂WCIV F ,

Ŝ1

(
θ̂, λ̂

)
=

1

n3

n∑
j=1

n∑
k=1

n∑
l=1

ỸjỸ
′
kεl

(
θ̂
)2
D̃jl

(
λ̂
)
D̃kl

(
λ̂
)

=
1

n3

n∑
j=1

n∑
k=1

n∑
l=1

ỸjỸ
′
kεl

(
θ̂
)2
DjlDkl −

1

n3
λ̂

n∑
j=1

n∑
k=1

n∑
l=1

ỸjỸ
′
kεl

(
θ̂
)2
DjlIkl

− 1

n3
λ̂

n∑
j=1

n∑
k=1

n∑
l=1

ỸjỸ
′
kεl

(
θ̂
)2
DklIjl +

1

n3
λ̂
2

n∑
j=1

n∑
k=1

n∑
l=1

ỸjỸ
′
kεl

(
θ̂
)2
IklIjl

:= A1n −A2n −A3n +A4n.

where Ikl denotes the (k, l)th element of In.

nR−1
n A2nR

−1′
n =

λ̂

n

1

n
R−1
n

n∑
l=1

n∑
j=1

ỸjỸ
′
lεl

(
θ̂
)2
DjlR

−1′
n

=
λ̂

n
·Op (1)

= op (1) ,

since by Lemma 9.10, λ̂/n = op (r
2
n/n) = op (1), and

1

n
R−1
n

n∑
l=1

n∑
j=1

ỸjỸ
′
lεl

(
θ̂
)2
DjlR

−1′
n = Op (1) .
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By similar arguments, we have nR−1
n A3nR

−1′
n = op (1).

nR−1
n A4nR

−1′
n =

1

n2
λ̂
2
R−1
n

n∑
j=1

n∑
k=1

n∑
l=1

ỸjỸ
′
kεl

(
θ̂
)2
IklIjlR

−1′
n

=
1

n2
λ̂
2
R−1
n

n∑
j=1

ỸjỸ
′
jεj

(
θ̂
)2

R−1′
n

= op (1) .

Now

nR−1
n A1nR

−1′
n =

1

n

n∑
l=1

(
εl

(
θ̂
)2 R−1

n√
n

n∑
j=1

ỸjDjl
1√
n

n∑
k=1

Ỹ′
kR

−1′
n Dkl

)
.

R−1
n√
n

n∑
j=1

ỸjDjl =
1

n

n∑
j=1

f̃ (Xj)Djl +
R−1
n√
n

n∑
j=1

η̃jDjl

= −Ej [(f (Xj)− µf ) ∥Xj −Xl∥] + op (1) ,

since

R−1
n√
n

n∑
j=1

η̃jDjl = op (1) ,

1

n

n∑
j=1

f̃ (Xj)Djl
p→ −Ej [(f (Xj)− µf ) ∥Xj −Xl∥] ,

where Ej denotes the expectation in terms of (Yj,Xj). Similarly,

1√
n

n∑
k=1

Ỹ′
kR

−1′
n Dkl = −Ek

[
(f (Xk)− µf )

′ ∥Xk −Xl∥
]
+ op (1) .

So by the continuous mapping theorem, we conclude that

nR−1
n Ω̂1

(
θ̂, λ̂

)
R−1′
n

p→ V1 (θ0) .

Analogously we can show

nR−1
n Ω̂2

(
θ̂, λ̂

)
R−1′
n

p→ V2 (θ0) ,

nR−1
n Ω̂3

(
θ̂, λ̂

)
R−1′
n

p→ V3 (θ0) .

Then by the continuous mapping theorem,

nR−1
n Ω̂

(
θ̂, λ̂

)
R−1′
n

p→ V (θ0) .
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Next

nR−1
n Υ̂

(
λ̂
)
R−1′
n =

R−1
n

n

∑
j,k

ỸjDjkỸ
′
kR

−1′
n − R−1

n

n
λ̂Ỹ′ỸR

−1′
n .

Since

R−1
n

n

∑
j,k

ỸjDjkỸ
′
kR

−1′
n = Π+ op (1)

λ̂R−1
n

n
Ỹ′ỸR

−1′
n =op

(
r2n
)
O (rn)Op (1)O (rn) = op (1) ,

we have

nR−1
n Υ̂

(
λ̂
)
R−1′
n

p→ Π.

Therefore,

R′−1
n

(
nR−1

n Υ̂
(
λ̂
)
R−1′
n

)−1

nR−1
n Ω̂

(
θ̂, λ̂

)
R−1′
n

(
nR−1

n Υ̂
(
λ̂
)
R−1′
n

)−1

R−1
n

= Υ̂
(
λ̂
)−1

Ω̂
(
θ̂, λ̂

)
Υ̂
(
λ̂
)−1

/n

is a consistent variance estimator for
(
β̂ − β0

)
. On the other hand, by the first-order Taylor

expansion, under H0,

g
(
β̂
)
= g (β0) +G

(
β̄
) (

β̂ − β0

)
= G

(
β̄
) (

β̂ − β0

)
,

where β̄ is vector between β̂ and β0, β̄
p→ β0. Then

1

n
G
(
β̂
)
Υ̂
(
λ̂
)−1

Ω̂
(
θ̂, λ̂

)
Υ̂
(
λ̂
)−1

G
(
β̂
)′

is a consistent variance estimator of g
(
β̂
)
. Therefore

Wn

(
θ̂,λ̂
)

d→ χ2
m.

9.1 Discussion on the Efficiency of WCIV and WCIVF

We analyze the efficiency of WCIV and WCIVF for fixed q = 1, 2 in an i.i.d. setup under ho-

moskedasticity and two distributional assumptions on (Y,X) . The matrixΥ of squared expected
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derivatives of the moment conditions corresponding to the objective function

1

2

∫
Rq

|hn (β, τ )|2ω (dτ )

for

hn (β, τ ) =
1

n

n∑
t=1

(
ỹt − β′Ỹt

)
exp (i ⟨τ ,Xt⟩) ,

and ỹt = yt − ȳ, evaluated at the true parameter value β0 can be represented as

Υ =

∫
E

[
∂

∂β
h (β0, τ )

]
E

[
∂

∂β
h (β0,−τ )

]′
ω (dτ )

=

∫
E [(Yt − µY ) exp (i ⟨τ ,Xt⟩)]E [(Yt − µY ) exp (−i ⟨τ ,Xt⟩)]′ω (dτ ) ,

where for Zt =
(
(Yt − µY)

′,X′
t

)′
,

E

[
∂

∂β
h (β0, τ )

]
= −E [(Yt − µY) exp (i ⟨τ ,Xt⟩)] = −1

i

∂

∂λ
φZ (λ, τ )

∣∣∣∣
λ=0

.

The asymptotic variance of the normalized score evaluated at the true value β0,

n1/2

∫
Rq

∂

∂β
hn (β0, τ )hn (β0,−τ )ω (dτ ) →d n

1/2Re

∫
Rq

E

[
∂

∂β
h (β0, τ )

]
hn (β0,−τ )ω (dτ ) ,

is

Ω =

∫
Rq

∫
Rq

E

[
∂

∂β
h (β0, τ )

]
E

[
∂

∂β
h (β0,−λ)

]′
k (τ ,λ)ω (dτ )ω (dλ)

where we set

k (τ ,λ) := lim
n→∞

E [nhn (β0, τ )hn (β0,−λ)]

= E

ε20t
 exp (i ⟨τ − λ,Xt⟩)− exp

(
i ⟨τ ,Xt⟩ − i

〈
λ,X+

t

〉)
− exp

(
i
〈
τ ,X+

t

〉
− i ⟨λ,Xt⟩

)
+ φX (τ )φX (−λ)


 ,

and under homoskedasticity, σ2
ε = E [ε20t] = E [ε20t|Xt] ,

k (τ ,λ) = σ2
εE

 exp (i ⟨τ − λ,Xt⟩)− exp
(
i ⟨τ ,Xt⟩ − i

〈
λ,X+

t

〉)
− exp

(
i
〈
τ ,X+

t

〉
− i ⟨λ,Xt⟩

)
+ φX (τ )φX (−λ)


= σ2

ε [φX (τ − λ)− φX (τ )φX (−λ)] .
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9.1.1 Normal case with non-integrable kernel

Assuming Zt ∼ N (µZ,ΣZZ) for

µZ =

 0

µX

 , ΣZZ =

 ΣYY ΣYX

ΣXY ΣXX


we have

φZ (λ, τ ) = exp

(
i ⟨µX , τ ⟩ −

1

2
(λ′, τ ′) ΣZZ (λ

′, τ ′)
′
)

and

∂

∂λ
φZ (λ, τ )

∣∣∣∣
λ=0

= −ΣYXτφZ (0, τ ) = −ΣYXτφX (τ ) .

Then,

Υ =

∫
Rq

ΣYXττ
′ΣXY |φX (τ )|2ω (dτ )

= ΣYX

{∫
Rq

ττ ′ exp (−τ ′ΣXXτ )ω (dτ )

}
ΣXY

= ΣYX

{∫
Rq

ττ ′ exp (−τ ′ΣXXτ )

cq ∥τ∥q+1 dτ

}
ΣXY,

where the term in braces is bounded. Assuming homoskedastic and independent elements in X,

ΣXX = σ2
XIq, ∫

Rq

ττ ′ exp (−τ ′ΣXXτ )

cq ∥τ∥q+1 dτ =

∫
Rq

ττ ′ exp (−σ2
Xτ

′τ )

cq ∥τ∥q+1 dτ .

When q = 1, for ρYX = σYX/(σYσX),

Υ = σ2
YX

∫
R
τ 2 exp

(
−τ 2σ2

X

) 1

πτ 2
dτ

= σ2
YX

(
2π
(
σ−2
X /2

))1/2
π

1(
2π
(
σ−2
X /2

))1/2 ∫
R
exp

(
− 1

2
(
σ−2
X /2

)τ 2

)
dτ

= σ2
YX

(
2π
(
σ−2
X /2

))1/2
π

=
σ2
YX√
πσX

=
1√
π
ρ2YXσ

2
YσX.
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When q = 2, for i = 1, 2,∫
R2

τ 2
i exp (−σ2

Xτ
′τ )

cq ∥τ∥q+1 dτ =
1

c2

∫
R2

τ 2
1 exp (−σ2

X (τ 2
1 + τ 2

2))

(τ 2
1 + τ 2

2)
3/2

dτ 1dτ 2

=
1

2c2
lim
r→∞

∫ r

−r

∫ 2π

0

s2 cos2 (θ)
exp (−σ2

Xs
2)

s3
sdsdθ

=
1

2c2
lim
r→∞

∫ r

−r

∫ 2π

0

cos2 (θ) exp
(
−σ2

Xs
2
)
dsdθ

=
1

2c2
(π)3/2 /σX =

√
π

4σX

,

using

τ 1 = s cos (θ) , τ 2 = s sin (θ)

dτ 1dτ 2 = sdsdθ∫ 2π

0

cos2 (θ) dθ =
1

2
sin (θ) cos (θ) |2π0 +

1

2
θ|2π0 = π

lim
r→∞

∫ r

−r
exp

(
−σ2

Xs
2
)
ds = (π)1/2 /σX,

while, proceeding similarly,∫
R2

τ 1τ 2 exp (−σ2
Xτ

′τ )

c2 ∥τ∥q+1 dτ =
Γ (3/2)

π3/2

∫
R2

τ 1τ 2 exp (−σ2
X (τ 2

1 + τ 2
2))

∥τ 2
1 + τ 2

2∥
3/2

dτ 1dτ 2

=
1

2c2
lim
r→∞

∫ r

−r

∫ 2π

0

s2 cos (θ) sin (θ)
exp (−σ2

Xs
2)

s3
sdsdθ

=
1

2c2

∫ r

−r

∫ 2π

0

cos (θ) sin (θ) exp
(
−σ2

Xs
2
)
dsdθ

= 0,

using ∫ 2π

0

cos (θ) sin (θ) dθ =
1

2
sin2 (θ) |2π0 = 0,

so that when q = 2

Υ =

√
π

4σX

ΣYXΣXY.

Next,

Ω =

∫
Rq

∫
Rq

ΣYXτλ
′ΣXYφX (τ )φX (−λ) k (λ, τ )ω (dτ )ω (dλ) = σ2

εΣYXAΣXY
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where

A :=

∫
Rq

∫
Rq

τλ′φX (τ )φX (−λ) [φX (λ− τ )− φX (λ)φX (−τ )]ω (dτ )ω (dλ)

=

∫
Rq

∫
Rq

τλ′ [φX (τ )φX (−λ)φX (λ− τ )− |φX (τ ) |2|φX (λ) |2
]
ω (dτ )ω (dλ) .

When q = 1,

A =

∫
R2

τλ

π2τ 2λ2
[
φX (τ )φX (−λ)φX (λ− τ )− |φX (τ ) |2|φX (λ) |2

]
dτdλ

=

∫
R2

1

π2τλ

exp
 −1

2
τ 2σ2

X − 1
2
λ2σ2

X

−1
2
(τ − λ)2 σ2

X

− exp
(
−τ 2σ2

X − λ2σ2
X

) dτdλ
=

∫
R2

1

π2τλ
exp

(
−τ 2σ2

X − λ2σ2
X

) [
exp

(
τλσ2

X

)
− 1
]
dτdλ

=
∞∑
j=1

∫
R2

1

π2τλ
exp

(
−τ 2σ2

X − λ2σ2
X

) (τλσ2
X)

2j−1

(2j − 1)!
dτdλ

= 4
∞∑
j=0

(σ2
X)

2j+1

(2j + 1)!

(
1

2π

∫
R
exp

(
−1

2
τ 22σ2

X

)
τ 2jdτ

)2

= 4
∞∑
j=0

(σ2
X)

2j+1

(2j + 1)!


(
2−j (2j)!

j!

)2
2π

{
2σ2

X

}−(2j+1)


=

1

π

∞∑
j=0

1

(2j + 1)!

(
(2j)!

j!

)2

2−4j =
1

3
,

so that

Ω =
1

3
σ2
εΣYXΣXY =

1

3
σ2
ερ

2
YXσ

2
Xσ

2
Y

and the asymptotic variance of WCIV for q = 1 is

Υ−1ΩΥ−1 =

(
1√
π
ρ2YXσ

2
YσX

)−2
1

3
σ2
ερ

2
YXσ

2
Xσ

2
Y

=
π

3

σ2
ε

ρ2YXσ
2
Y

≈ 1.0472
σ2
ε

ρ2YXσ
2
Y

,

which is invariant to σ2
X and only marginally larger than the limiting optimal Gaussian-weighting

case and the IV case, σ2
ε/ (ρ

2
YXσ

2
Y) with AREWCIV = π/3 ≈ 1.0472.
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When q = 2 or larger we have

A =

∫
Rq

∫
Rq

τλ′

c2q ∥τ∥
q+1 ∥λ∥q+1 exp

(
−σ2

X ∥τ∥2 − σ2
X ∥λ∥2

) [
exp

(
σ2
Xτ

′λ
)
− 1
]
dτdλ

where

τλ′ [exp (σ2
Xτ

′λ
)
− 1
]
= τλ′

∞∑
j=1

(σ2
Xτ

′λ)
j

j!
= ττ ′λλ′

∞∑
j=1

σ2j
X (τ ′λ)j−1

j!

and for q = 2 and j = 1, 2, . . .,

(τ ′λ)
j−1

= (τ 1λ1 + τ 2λ2)
j−1 =

j−1∑
ℓ=0

(
j−1
ℓ

)
(τ 1λ1)

ℓ (τ 2λ2)
j−1−ℓ

=

j−1∑
ℓ=0

(
j−1
ℓ

)
(τ 1)

ℓ (τ 2)
j−1−ℓ (λ1)

ℓ (λ2)
j−1−ℓ .

Then

A =
∞∑
j=1

σ2j
X

j!

j−1∑
ℓ=0

(
j−1
ℓ

) ∫
Rq

ττ ′ exp
(
−σ2

X ∥τ∥2
)

cq ∥τ∥q+1 (τ 1)
ℓ (τ 2)

j−1−ℓ dτ

×
∫
Rq

λλ′ exp
(
−σ2

X ∥λ∥2
)

cq ∥λ∥q+1 (λ1)
ℓ (λ2)

j−1−ℓ dλ

=
∞∑
j=1

σ2j
X

j!

j−1∑
ℓ=0

(
j−1
ℓ

)
A2
j,ℓ, Aj,ℓ =

∫
Rq

ττ ′ exp
(
−σ2

X ∥τ∥2
)

cq ∥τ∥q+1 (τ 1)
ℓ (τ 2)

j−1−ℓ dτ ,

where we evaluate the typical elements in the matrix Aj,ℓ, diagonal and off-diagonal,

diagonal: aj,ℓ :=

∫
Rq

τ 21 exp
(
−σ2

X ∥τ∥2
)

cq ∥τ∥q+1 (τ 1)
ℓ (τ 2)

j−1−ℓ dτ , ℓ even

off-diagonal: bj,ℓ :=

∫
Rq

τ 1τ 2 exp
(
−σ2

X ∥τ∥2
)

cq ∥τ∥q+1 (τ 1)
ℓ (τ 2)

j−1−ℓ dτ , ℓ odd.
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Diagonal terms: ℓ even, q = 2, j odd, j = 2i+ 1, i = 0, 1, 2, . . . , and Z ∼ N (0, 1) ,

aj,ℓ :=

∫
Rq

τ 21 exp
(
−σ2

X ∥τ∥2
)

cq ∥τ∥q+1 (τ 1)
ℓ (τ 2)

j−1−ℓ dτ

=
1

2c2
lim
r→∞

∫ r

−r

∫ 2π

0

sj+1 exp (−σ2
Xs

2)

s3
cos2+ℓ (θ) sinj−1−ℓ (θ) sdsdθ

=
1

2c2
lim
r→∞

∫ r

−r
sj−1 exp

(
−σ2

Xs
2
)
ds

∫ 2π

0

cos2+ℓ (θ) sinj−1−ℓ (θ) dθ

=
1

2c2

{
E
[
Zj−1

] √
π

2(j−1)/2
σ−j
X

}∫ 2π

0

cos2+ℓ (θ) sinj−1−ℓ (θ) dθ

=
1

2c2

{(
(2i)!

2ii!

) √
π

2i
σ−1−2i
X

}∫ 2π

0

cos2+ℓ (θ) sin2i−ℓ (θ) dθ

Off-diagonal terms: ℓ odd, q = 2, j odd, j = 2i+ 1, i = 0, 1, 2, . . . ,

bj,ℓ :=

∫
Rq

τ 1τ 2 exp
(
−σ2

X ∥τ∥2
)

cq ∥τ∥q+1 (τ 1)
ℓ (τ 2)

j−1−ℓ dτ

=
1

2c2
lim
r→∞

∫ r

−r

∫ 2π

0

sj+1 exp (−σ2
Xs

2)

s3
cos1+ℓ (θ) sinj−ℓ (θ) sdsdθ

=
1

2c2
lim
r→∞

∫ r

−r
sj−1 exp

(
−σ2

Xs
2
)
ds

∫ 2π

0

cos1+ℓ (θ) sinj−ℓ (θ) dθ

=
1

2c2

{(
(2i)!

2ii!

) √
π

2i
σ−1−2i
X

}∫ 2π

0

cos1+ℓ (θ) sin2i+1−ℓ (θ) dθ

Then A2
j,ℓ is diagonal with typical element equal to a2j,ℓ or b

2
j,ℓ for ℓ even or odd, respectively, j

always odd.

Now, for m, n even, ∫ 2π

0

sinn x cosm xdx = 2π
(n− 1)!! (m− 1)!!

(n+m)!!

with the double factorial evaluated using

a = 2k even: a!! = 2kk!

a = 2k − 1 odd: a!! =
(2k)!

2kk!
,
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so that, ℓ even, ℓ = 0, 2, . . . , 2i∫ 2π

0

cos2+ℓ (θ) sin2i−ℓ (θ) dθ = 2π
(2 + ℓ− 1)!! (2i− ℓ− 1)!!

(2 + 2i)!!

= 2π
1

22(1+i)
(2 + ℓ)!

(1 + ℓ/2)!

(2i− ℓ)!

(i− ℓ/2)!

1

(1 + i)!

and, ℓ odd, ℓ = 1, 3, . . . , 2i−1 (j = 2i+1), ℓ := 2k−1, so 2i−ℓ = 2i−2k+1 = 2 (i− k + 1)−1,∫ 2π

0

cos1+ℓ (θ) sinj−ℓ (θ) dθ = 2π
ℓ!! (j − ℓ− 1)!!

(j + 1)!!
= 2π

ℓ!! (2i− ℓ)!!

(2i+ 2)!!

= 2π
1

22(i+1)

(ℓ+ 1)!

((ℓ+ 1)/2)!

(2i− ℓ+ 1)!

(i− (ℓ− 1)/2)!

1

(i+ 1)!
.

Then, c2 = 2π,

aj,ℓ =
1

2c2

{(
(2i)!

2ii!

) √
π

2i
σ−1−2i
X

}
2π

1

22(1+i)
(2 + ℓ)!

(1 + ℓ/2)!

(2i− ℓ)!

(i− ℓ/2)!

1

(1 + i)!

=
σ−1−2i
X

2

√
π

22+4i

(2i)!

i!

1

(1 + i)!

(2 + ℓ)!

(1 + ℓ/2)!

(2i− ℓ)!

(i− ℓ/2)!

so for ℓ = 2k even, j = 2i+ 1 odd,

j−1∑
ℓ=0,even

(
j−1
ℓ

)
a2j,ℓ =

i∑
k=0

(
2i
2k

)
a22i+1,2k =

{
σ−1−2i
X

4

√
π

4

(2i)!

i! (1 + i)!

}2 i∑
k=0

α2i+1,2k,

α2i+1,2k =
(2i)!

(2k)!(2i− 2k)!

(
(2 + 2k)!

(1 + k)!

(2i− 2k)!

(i− k)!

)2

.

Similarly,

bj,ℓ =
1

2c2

{(
(2i)!

2ii!

) √
π

2i
σ−1−2i
X

}
2π

1

22(i+1)

(ℓ+ 1)!

((ℓ+ 1)/2)!

(2i− ℓ+ 1)!

(i− (ℓ− 1)/2)!

1

(i+ 1)!

=
σ−1−2i
X

2

√
π

22+4i

(2i)!

i!

1

(i+ 1)!

(ℓ+ 1)!

((ℓ+ 1)/2)!

(2i− ℓ+ 1)!

(i− (ℓ− 1)/2)!

and for ℓ = 2k + 1 odd,

j−1∑
ℓ=0,odd

(
j−1
ℓ

)
b2j,ℓ =

i−1∑
k=0

(
2i

2k+1

)
b22i+1,2k+1 =

{
σ−1−2i
X

4

√
π

22+4i

(2i)!

i! (1 + i)!

}2 i−1∑
k=0

β2i+1,2k+1,

β2i+1,2k+1 =
(2i)!

(2k + 1)!(2i− 2k − 1)!

(
(2 (k + 1))!

(k + 1)!

(2 (i− k))!

(i− k)!

)2

.
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Then, j = 2i+ 1,

A = Iq

∞∑
j=1

σ2j
X

j!

j−1∑
ℓ=0

(
j−1
ℓ

)
A2
j,ℓ

= Iq

∞∑
i=0

σ4i+2
X

(2i+ 1)!

{
i∑

k=0

(
2i
2k

)
a22i+1,2k +

i−1∑
k=0

(
2i

2k+1

)
b22i+1,2k+1

}

= Iq

∞∑
i=0

σ4i+2
X

(2i+ 1)!

{
σ−1−2i
X

4

√
π

22+4i

(2i)!

i! (1 + i)!

}2
{

i∑
k=0

α2i+1,2k +
i−1∑
k=0

β2i+1,2k+1

}

= Iq
π

42

∞∑
i=0

1

22+8i

1

(2i+ 1)!

{
(2i)!

i! (1 + i)!

}2
{

i∑
k=0

α2i+1,2k +
i−1∑
k=0

β2i+1,2k+1

}
,

where we can approximate numerically the two infinite series as 1.0287+5.8917×10−3 = 1.034 6

so that

Ω = σ2
εΣYXAΣXY ≈ 1.0346 · σ2

ε

π

42
ΣYXΣXY

and with Υ =
√
π
4
σ−1
X ΣYXΣXY, the asymptotic variance of WCIV for q = 2 is

Υ−1ΩΥ−1 ≈ 1.0346 · σ2
εσ

2
X (ΣYXΣXY)

−1

which is proportional by a factor AREWCIV = 1.0346 to the asymptotic variance of the 2SLS

estimate under homoskedasticity and iid-ness of X,

(
ΣYXΣ

−1
XXΣXY

)−1
ΣYXΣ

−1
XXE

[
ε2XX′]Σ−1

XXΣXY

(
ΣYXΣ

−1
XXΣXY

)−1
= σ2

εσ
2
X (ΣYXΣXY)

−1 ,

implying an even smaller efficiency loss than in the q = 1 case with respect to 2SLS. We conjecture

in the light of our numerical experiments that the small efficiency loss of WCIV shrinks as q

increases.
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9.1.2 Normal case with Gaussian Kernel

For q = 1

Υ = σ2
YX

∫
Rq

τ 2 exp
(
−τ 2σ2

X

) 1√
2π

exp

(
−1

2
τ 2

)
dτ

= σ2
YX

(
1 + 2σ2

X

)−1/2 1(
2π (1 + 2σ2

X)
−1
)1/2 ∫

Rq

τ 2 exp

(
−1

2
τ 2
(
1 + 2σ2

X

))
dτ

= σ2
YX

(
1 + 2σ2

X

)−3/2
= ρ2YX

σ2
Yσ

2
X

(1 + 2σ2
X)

3/2
,

while for Z ∼ N (0, 1) ,

A =
1

2π

∫
R2

τλ′ exp
(
−σ2

X ∥τ∥2 − σ2
X ∥λ∥2

) [
exp

(
σ2
Xτ

′λ
)
− 1
]

× exp

(
−1

2

(
∥τ∥2 + ∥λ∥2

))
dτdλ

=
1

2π

∫
R2

τλ exp

(
−1

2

(
1 + 2σ2

X

)
τ 2 − 1

2

(
1 + 2σ2

X

)
λ2

)[
exp

(
σ2
Xτλ

)
− 1
]
dτdλ

=
1

2π

∫
R2

τλ exp

(
−1

2

(
1 + 2σ2

X

)
τ 2 − 1

2

(
1 + 2σ2

X

)
λ2

) ∞∑
j=1

1

j!

(
σ2
Xτλ

)j
dτdλ

=
1

2π

∞∑
j=0

(σ2
X)

2j+1

(2j + 1)!

∫
R2

exp

(
−1

2

(
1 + 2σ2

X

)
τ 2 − 1

2

(
1 + 2σ2

X

)
λ2

)
(τλ)2j+2 dτdλ

=
(
1 + 2σ2

X

)−1
∞∑
j=0

(σ2
X)

2j+1

(2j + 1)!

×

 1√
2π (1 + 2σ2

X)
−1

∫
R2

exp

(
−1

2

(
1 + 2σ2

X

)
τ 2

)
τ 2j+2dτ

2

=
(
1 + 2σ2

X

)−1
∞∑
j=0

(σ2
X)

2j+1

(2j + 1)!

(
1 + 2σ2

X

)−2j−2
E
[
Z2j+2

]2
,
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which, using that E [Z2j+2] = 2−j−1 (2j+2)!
(j+1)!

, is

A =
(
1 + 2σ2

X

)−2
∞∑
j=0

(
σ2
X

1 + 2σ2
X

)2j+1
1

(2j + 1)!

[
2−j−1 (2j + 2)!

(j + 1)!

]2

=
(
1 + 2σ2

X

)−2

σ2
X

1+2σ2
X(

1−
(

σ2
X

1+2σ2
X

)2) 3
2

=
σ2
X

(1 + σ2
X)

3
2 (1 + 3σ2

X)
3
2

.

Then

Ω = σ2
εΣYXAΣXY = σ2

ερ
2
YXσ

2
Xσ

2
Y

σ2
X

(1 + σ2
X)

3
2 (1 + 3σ2

X)
3
2

so that

Υ−1ΩΥ−1 =

(
ρ2YX

σ2
Yσ

2
X

(1 + 2σ2
X)

3/2

)−2

σ2
ερ

2
YXσ

2
Xσ

2
Y

σ2
X

(1 + σ2
X)

3
2 (1 + 3σ2

X)
3
2

=
σ2
ε

ρ2YXσ
2
Y

(1 + 2σ2
X)

3

(1 + σ2
X)

3
2 (1 + 3σ2

X)
3
2

,

which is minimum as σ2
X → 0 achieving the usual IV asymptotic variance, and in general

AREWMD =
(1 + 2σ2

X)
3

(1 + σ2
X)

3
2 (1 + 3σ2

X)
3
2

∈
(
1,

8

9

√
3

)
≈ (1, 1.5396) ,

which can be substantially larger than the efficiency of WCIV for q = 1, π/3 = 1.0472, except

for σ2
X < 0.26688. Otherwise, i.e., for larger σ2

X, including σ
2
X = 1, Gaussian-kernel is (possibly

much) less efficient (under a Gaussian+homoskedasticity assumption) than the non-integrable

kernel.

For general q,

Υ =

∫
Rq

ΣYXττ
′ΣXY |φX (τ )|2ω (dτ )

= ΣYX

{∫
Rq

ττ ′ exp (−τ ′ΣXXτ )ω (dτ )

}
ΣXY

= ΣYX

{
(2π)−q/2

∫
Rq

ττ ′ exp

(
−1

2
∥τ∥2

(
1 + 2σ2

X

))
dτ

}
ΣXY
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where for q = 2 the integral is diagonal with typical element equal to

1

2π

∫
R2

τ 2
1 exp

(
−1

2
∥τ∥2

(
1 + 2σ2

X

))
dτ

=
1

2π

∫ ∞

0

∫ 2π

0

s2 exp

(
−1

2
s2
(
1 + 2σ2

X

))
cos2 θsdθ

=
π

2π

∫ ∞

0

s3 exp

(
−1

2
s2
(
1 + 2σ2

X

))
ds

=
1

2

(
2π
(
1 + 2σ2

X

)−1
)1/2 (

1 + 2σ2
X

)−3/2 1

2
E
[
|Z|3

]
= 2−3/2π1/2

(
1 + 2σ2

X

)−2 23/2√
π

=
(
1 + 2σ2

X

)−2
,

or, alternatively, this is

1√
2π

∫
R
τ 2
1 exp

(
−1

2
τ 2
1

(
1 + 2σ2

X

))
dτ 1

1√
2π

∫
R
exp

(
−1

2
τ 2
2

(
1 + 2σ2

X

))
dτ 2 =

(
1 + 2σ2

X

)−2
.

Next, for q = 2,

A =
1

(2π)2

∫
R2

∫
R2

τλ′ exp

(
−1

2

(
1 + 2σ2

X

)
∥τ∥2 − 1

2

(
1 + 2σ2

X

)
∥λ∥2

)[
exp

(
σ2
Xτ

′λ
)
− 1
]
dτdλ

where

τλ′ [exp (σ2
Xτ

′λ
)
− 1
]

= τλ′
∞∑
j=1

(σ2
Xτ

′λ)
j

j!

= ττ ′λλ′
∞∑
j=1

σ2j
X (τ ′λ)j−1

j!

= ττ ′λλ′
∞∑
i=0

σ
2(2i+1)
X (τ ′λ)2i

(2i+ 1)!

and for q = 2 and j = 1, 2, . . . (only odd j contributes, j = 2i+ 1, i = 0, 1, . . .),

(τ ′λ)
j−1

= (τ 1λ1 + τ 2λ2)
j−1 =

j−1∑
ℓ=0

(
j−1
ℓ

)
(τ 1)

ℓ (τ 2)
j−1−ℓ (λ1)

ℓ (λ2)
j−1−ℓ .
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Then

A =
∞∑
j=1

σ2j
X

j!

j−1∑
ℓ=0

(
j−1
ℓ

)
A2
j,ℓ,

Aj,ℓ =
1

2π

∫
R2

ττ ′ exp

(
−1

2

(
1 + 2σ2

X

)
∥τ∥2

)
(τ 1)

ℓ (τ 2)
j−1−ℓ dτ 1dτ 2,

where we evaluate the typical elements in the 2× 2 matrix Aj,ℓ, diagonal and off-diagonal,

diagonal: aj,ℓ :=
1

2π

∫
R2

τ 21 exp

(
−1

2

(
1 + 2σ2

X

)
∥τ∥2

)
(τ 1)

ℓ (τ 2)
j−1−ℓ dτ 1dτ 2, ℓ even

off-diagonal: bj,ℓ :=
1

2π

∫
R2

τ 1τ 2 exp

(
−1

2

(
1 + 2σ2

X

)
∥τ∥2

)
(τ 1)

ℓ (τ 2)
j−1−ℓ dτ 1dτ 2, ℓ odd.

Diagonal terms: ℓ even, q = 2, j odd, j = 2i+ 1, i = 0, 1, 2, . . . , and Z ∼ N (0, 1) ,

aj,ℓ :=
1

2π

∫
R2

τ 21 exp

(
−1

2

(
1 + 2σ2

X

)
∥τ∥2

)
(τ 1)

ℓ (τ 2)
j−1−ℓ dτ 1dτ 2

=
1

2π

∫
R
τ 2+ℓ1 exp

(
−1

2

(
1 + 2σ2

X

)
τ 21

)
dτ 1

∫
R
τ j−1−ℓ
2 exp

(
−1

2

(
1 + 2σ2

X

)
τ 22

)
dτ 2

=
(
1 + 2σ2

X

)−1 (
1 + 2σ2

X

)−j−1
2 E

[
Z2+ℓ

]
E
[
Zj−1−ℓ]

=
(
1 + 2σ2

X

)−j−3
2

(
(2 + ℓ)!

21+ℓ/2(1 + ℓ/2)!

)(
(j − 1− ℓ)!

2(j−1−ℓ)/2((j − 1− ℓ)/2)!

)
=

(
1 + 2σ2

X

)−i−2
(

(2 + ℓ)!

21+ℓ/2(1 + ℓ/2)!

)(
(2i− ℓ)!

2i−ℓ/2(i− ℓ/2)!

)
.

Off-diagonal terms: ℓ odd, q = 2, j odd, j = 2i+ 1, i = 0, 1, 2, . . . ,

bj,ℓ :=
1

2π

∫
R2

τ 1τ 2 exp

(
−1

2

(
1 + 2σ2

X

)
∥τ∥2

)
(τ 1)

ℓ (τ 2)
j−1−ℓ dτ 1dτ 2

=
1

2π

∫
R
τ 1+ℓ1 exp

(
−1

2

(
1 + 2σ2

X

)
τ 21

)
dτ 1

∫
R
τ j−ℓ2 exp

(
−1

2

(
1 + 2σ2

X

)
τ 22

)
dτ 2

=
(
1 + 2σ2

X

)−1 (
1 + 2σ2

X

)−j−1
2 E

[
Z1+ℓ

]
E
[
Zj−ℓ]

=
(
1 + 2σ2

X

)−j−3
2

(
(1 + ℓ)!

2(1+ℓ)/2((1 + ℓ)/2)!

)(
(j − ℓ)!

2(j−ℓ)/2((j − ℓ)/2)!

)
=

(
1 + 2σ2

X

)−i−2
(

(1 + ℓ)!

2(1+ℓ)/2((1 + ℓ)/2)!

)(
(2i+ 1− ℓ)!

2i+(1−ℓ)/2(i+ (1− ℓ)/2)!

)
.

Then A2
j,ℓ is diagonal with typical element equal to a2j,ℓ or b

2
j,ℓ for ℓ even or odd, respectively, j

always odd.
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Then, for ℓ = 2k even, j = 2i+ 1 odd,

j−1∑
ℓ=0,even

(
j−1
ℓ

)
a2j,ℓ =

i∑
k=0

(
2i
2k

)
a22i+1,2k =

(
1 + 2σ2

X

)−2i−4
i∑

k=0

α2i+1,2k,

α2i+1,2k =
(2i)!

(2k)!(2i− 2k)!

(
(2 + 2k)!

21+k(1 + k)!

)2(
(2i− 2k)!

2i−k(i− k)!

)2

.

Similarly, for ℓ = 2k + 1 odd,

j−1∑
ℓ=0,odd

(
j−1
ℓ

)
b2j,ℓ =

i−1∑
k=0

(
2i

2k+1

)
b22i+1,2k+1 =

(
1 + 2σ2

X

)−2i−4
i−1∑
k=0

β2i+1,2k+1,

β2i+1,2k+1 =
(2i)!

(2k + 1)!(2i− 2k − 1)!

(
(2 + 2k)!

2k+1(k + 1)!

)2(
(2i− 2k)!

2i−k(i− k)!

)2

.

Then,

A =
∞∑
j=1

σ2j
X

j!

j−1∑
ℓ=0

(
j−1
ℓ

)
A2
j,ℓ

= Iq

∞∑
i=0

σ4i+2
X

(2i+ 1)!

{
i∑

k=0

(
2i
2k

)
a22i+1,2k +

i−1∑
k=0

(
2i

2k+1

)
b22i+1,2k+1

}

= Iq

∞∑
i=0

σ4i+2
X (1 + 2σ2

X)
−2i−4

(2i+ 1)!

{
i∑

k=0

α2i+1,2k +
i−1∑
k=0

β2i+1,2k+1

}

= Iq
σ2
X

(1 + 2σ2
X)

4

∞∑
i=0

1

(2i+ 1)!

(σ2
X)

2i

(1 + 2σ2
X)

2i

{
i∑

k=0

α2i+1,2k +
i−1∑
k=0

β2i+1,2k+1

}

= Iq
σ2
X

(1 + 2σ2
X)

4γq
(
σ2
X

)
where we can approximate numerically the two infinite series inAREWMD = γ2 (σ

2
X) ∈ (1, 1.778)

for given values of σ2
X , e.g. for σ

2
X ∈ {1/2, 1, 2} we have γ2 (σ

2
X) = {1.137 8, 1.265 6, 1.417 2}

Then, for q = 2,

Ω = σ2
εΣYXAΣXY = γ2

(
σ2
X

) σ2
X

(1 + 2σ2
X)

4σ
2
εΣYXΣXY

so that with Υ = (1 + 2σ2
X)

−2
ΣYXΣXY, the asymptotic variance of WCIV for q = 2 is

Υ−1ΩΥ−1 = γ2
(
σ2
X

)
· σ2

εσ
2
X (ΣYXΣXY)

−1 = AREWMD · σ2
εσ

2
X (ΣYXΣXY)

−1

so WMD can be very inefficient compared to 2SLS estimation if σ2
X is not very small, where
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the inefficiency can be larger the larger is q.

9.1.3 Exponential case with non-integrable kernel

1. We model the joint distribution of Y and X for q = 1 with the Bivariate Exponential

distribution of Marshall and Olkin (1967), with joint moment generating function given

by, λ = λ1 + λ2 + λ12,

ψ (µ, τ) =
(λ+ µ+ τ) (λ1 + λ12) (λ2 + λ12) + µτλ12
(λ+ µ+ τ) (λ1 + λ12 + µ) (λ2 + λ12 + τ)

so that the characteristic function is

φY,X (µ, τ) =
(λ− iµ− iτ) (λ1 + λ12) (λ2 + λ12)− µτλ12
(λ− iµ− iτ) (λ1 + λ12 − iµ) (λ2 + λ12 − iτ)

and if λ12 = 0, Y and X become independent with exponential marginals

φX (τ) = φ (0, τ) =
(λ− iτ) (λ1 + λ12) (λ2 + λ12)

(λ− iτ) (λ1 + λ12) (λ2 + λ12 − iτ)
=

λ2
λ2 − iτ

∼ Exp (λ2) ,

and in general the marginals are exponential

φX (τ) = φ (0, τ) =
λ2 + λ12

λ2 + λ12 − iτ
∼ Exp (λ2 + λ12) ∼ Exp

(
m−1

2

)
.

Since Y is centered, we focus on, m1 =
1

λ1+λ12
,

φZ (µ, τ) = φY−m1,X (µ, τ) = φ (µ, τ) e−iµm1 .

Then,

∂

∂µ
φZ (µ, τ) =

∂

∂µ

(
(λ− iµ− iτ) (λ1 + λ12) (λ2 + λ12)− µτλ12
(λ− iµ− iτ) (λ1 + λ12 − iµ) (λ2 + λ12 − iτ)

)
− im1e

−iµm1φ (µ, τ) ,

and

∂

∂µ
φZ (µ, τ )

∣∣∣∣
µ=0

=
(λ1 + λ12)

(
iλ2λ2 − iτ 2λ2 + iλ2λ12 + 2λτλ2 + λτλ12

)
(λ1 + λ12)

2 (λ− iτ)2 (λ2 − iτ + λ12)
− im1

(λ2 + λ12)

(λ2 + λ12 − iτ)

=
i
(
λ2λ2 + λ2λ12 − τ 2λ2

)
+ (2λ2 + λ12)λτ

(λ1 + λ12) (λ− iτ)2 (λ2 + λ12 − iτ)
− im1

(λ2 + λ12)

(λ2 + λ12 − iτ)
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so this is

=
i
((
λ2λ2 + λ2λ12 − τ 2λ2

)
−m1 (λ2 + λ12) (λ1 + λ12) (λ− iτ)2

)
+ (2λ2 + λ12)λτ

(λ1 + λ12) (λ− iτ)2 (λ2 + λ12 − iτ)

=
λ12τ {iτ − λ}

(λ1 + λ12) (λ− iτ)2 (λ2 + λ12 − iτ)

= −τσY X
λ

λ− iτ
φX (τ)

and ∣∣∣∣∣ ∂∂µφZ (µ, τ )

∣∣∣∣
µ=0

∣∣∣∣∣
2

=
λ212τ

2

(λ1 + λ12)
2 (λ2 + τ 2

) (
(λ2 + λ12)

2 + τ 2
) .

Then, for the non-integrable kernel we have,

Υ =

∫
R

{
∂

∂µ
φZ (µ, τ )

∣∣∣∣
µ=0

}{
∂

∂µ
φZ (µ,−τ )

∣∣∣∣
µ=0

}
ω (dτ )

=

∫
R

∣∣∣∣∣ ∂∂µφZ (µ, τ )

∣∣∣∣
µ=0

∣∣∣∣∣
2

1

πτ 2
dτ

=
λ212m

2
1

π

∫
R

1(
λ2 + τ 2

) (
m−2

2 + τ 2
)dτ

= ρ2Y Xσ
2
Y λ

2 1

π

∫
R

1(
λ2 + τ 2

) (
m−2

2 + τ 2
)dτ

= ρ2Y Xσ
2
Xσ

2
Y

1

π

∫
R

1

(1 + (τ/λ)2)
(
1 + (τm2)

2)dτ , m2 = σX

= ρ2Y Xσ
2
Y σX

1

π

∫
R

1

(1 + (x/λm2)2) (1 + x2)
dx,

= ρ2Y Xσ
2
Y σX

λm2

λm2 + 1
= ρ2Y Xσ

2
Y σX

λ

λ+m−1
2

= ρ2Y Xσ
2
Y σX

{
λ1 + λ2 + λ12
λ1 + 2λ2 + 2λ12

}
= ρ2Y Xσ

2
Y σX

{
1 +

m−1
2

λ

}−1

where

σY X =
λ12

λ (λ1 + λ12) (λ2 + λ12)
=

{
λ12
λ

}
m1m2 = {ρY X}σXσY .

We can set

Υ = ρ2Y Xσ
2
Y σX · cΥ (ρ,m1,m2)

cΥ (ρ,m1,m2) :=

{
1 +

m−1
2

λ

}−1

=

{
1 +

m−1
2

λ12
ρ

}−1

=

{
1 +

m−1
2(

m−1
1 +m−1

2

) (ρ+ 1)

}−1
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Then, for comparison purposes we fix

ρ =
λ12
λ

and σ2
Y = σ2

1 = (λ1 + λ12)
−2 = m2

1

and keep free m2 = (λ2 + λ12)
−1 = σ2 = σX .

For the variance term we obtain

E

[
∂

∂β
h (β0, τ )

]
= −E [(Yt − µY ) exp (i ⟨τ ,Xt⟩)] = −1

i

∂

∂µ
φZ (µ, τ )

∣∣∣∣
λ=0

= − λ12τ {iτ − λ}
(λ1 + λ12) (λ− iτ)2 (λ2 + λ12 − iτ)

=
λ12τ

(λ2 + λ12) (λ1 + λ12) (λ− iτ)

λ12 + λ2
(λ2 + λ12 − iτ)

= τ
λ12

λ (λ2 + λ12) (λ1 + λ12)

λ

(λ− iτ)
φX (τ)

= τσY X
λ

(λ− iτ)
φX (τ) .

Then, under homoskedasticity,

Ω

σ2
εσ

2
Y X

=

∫
R2

τµ
λ

(λ− iτ)

λ

(λ+ iµ)
φX (τ)φX (−µ) [φX (µ− τ)− φX (µ)φX (−τ)]ω (dτ)ω (dµ)

=

∫
R2

τµ
λ

(λ− iτ)

λ

(λ+ iµ)

[
φX (τ)φX (−µ)φX (µ− τ)− |φX (τ) |2|φX (µ) |2

]
ω (dτ)ω (dµ)

where for the univariate Exponential case,

φX (τ) =
λ12 + λ2

λ12 + λ2 − iτ
, |φX (τ)|2 = (λ12 + λ2)

2

(λ12 + λ2)
2 + τ 2

,
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so that Ω/ (σ2
εσ

2
Y X) is, m = 1/λ,∫

R2

τµ

π2τ 2µ2

λ

(λ− iτ)

λ

(λ+ iµ)

[
φX (−µ)φX (τ)φX (µ− τ)− |φX (µ) |2|φX (τ) |2

]
dτdµ

=
1

π2

∫
R2

1

τµ

λ

(λ− iτ)

λ

(λ+ iµ)

×

[
λ12 + λ2

λ12 + λ2 + iµ

λ12 + λ2
λ12 + λ2 − iτ

λ12 + λ2
λ12 + λ2 − i (µ− τ)

− (λ12 + λ2)
2

(λ12 + λ2)
2 + µ2

(λ12 + λ2)
2

(λ12 + λ2)
2 + τ 2

]
dτdµ

=
1

π2

∫
R2

1

τµ

1

1− iτm

1

1 + iµm

×
[

1

1 + iµm2

1

1− iτm2

1

1− i (µ− τ)m2

− 1

1 + (µm2)
2

1

1 + (τm2)
2

]
dτdµ

=
1

π2

∫
R2

1

τµ

1 + iτm

1 + (τm)2
1− iµm

1 + (µm)2

×
[

1− iµm2

1 + (µm2)
2

1 + iτm2

1 + (τm2)
2

1 + i (µ− τ)m2

1 + ((µ− τ)m2)
2 − 1

1 + (µm2)
2

1

1 + (τm2)
2

]
dτdµ

=
1

π2

∫
R2

1

τµ

1 + iτm

1 + (τm)2
1− iµm

1 + (µm)2
(1− iµm2) (1 + iτm2) (1 + i (µ− τ)m2)−

(
1 + ((µ− τ)m2)

2)(
1 + (µm2)

2) (1 + (τm2)
2) (1 + ((µ− τ)m2)

2) dτdµ

=
m2

2

π2

∫
R2

1

1 + (τm)2
1

1 + (µm)2
((m2 − 2mm2) τµ+mτ 2m2 +mµ2m2 + 1)(
1 + (µm2)

2) (1 + (τm2)
2) (1 + ((µ− τ)m2)

2)dτdµ,
which can be evaluated numerically at different combinations of (m,m1,m2) or equivalently of

(λ12, λ1, λ2) , see Table 9.

Then we can evaluate the ARE of WCIV with respect to IV as

Υ−1ΩΥ−1 = AREWCIV
σ2
ε

ρ2Y Xσ
2
Y

,

using the numerical approximation of Ω/ (σ2
εσ

2
Y X) = Ω/ {σ2

ερ
2
Y Xσ

2
Y σ

2
X} , where the next table

shows that the WCIV can be more efficient than the IV estimate.
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{λ12, λ1, λ2}
{

1
2
, 1
2
, 1
2

} {
1
2
, 1
2
, 1
4

} {
1
2
, 1
2
, 1
8

} {
1
2
, 1
2
, 1
} {

1
2
, 1
2
, 2
}

λ = m−1 1.5 5
4

9
8

2 3
ρ2Y X = λ12/λ 1/3 2

5
4
9

1
4

1
6

σ2
Y 1 1 1 1 1

σX = m2 = (λ12 + λ12)
−1 1 4

3
8
5

2
3

2
5

σ2
X = m2

2 = (λ12 + λ12)
−2 1 16

9
64
25

4
9

4
25

Υ/ {ρ2Y Xσ2
Y σX} = λ1+λ2+λ12

λ1+2λ2+2λ12
3/5 5

8
9
14

4
7

6
11

Ω/ {σ2
ερ

2
Y Xσ

2
Y σ

2
X} = Ω

σ2
εσ

2
Y X

0.32571 0.33781 0.34581 0.31070 0.29606

AREWCIV 0.90475 0.86479 0.83677 0.95152 0.99509

Table 9: WCIV ARE for (Y,X) exponential under homoskedasticity, q = 1. Non-integrable
kernel.

9.1.4 Exponential case with Gaussian Kernel

Now we have

Υ =

∫
R
α (τ) τ 2

1√
2π

exp

(
−1

2
τ 2
)
dτ

= ρ2Y Xσ
2
Xσ

2
Y

∫
R

τ 2

(1 + (τ/λ)2)
(
1 + (τm2)

2) 1√
2π

exp

(
−1

2
τ 2
)
dτ

= ρ2Y Xσ
2
Xσ

2
Y σ

−2
X

∫
R

x2

(1 + (x/λm2)2) (1 + x2)

1√
2πm2

2

exp

(
−1

2

(
x

m2

)2
)
dx

= ρ2Y Xσ
−1
X σ2

Y

∫
R

x2

(1 + (x/λm2)2) (1 + x2)

1√
2π

exp

(
−1

2

(
x

m2

)2
)
dx

while for the variance term we have

Ω

σ2
εσ

2
Y X

=

∫
R2

τµ
λ

(λ− iτ)

λ

(λ+ iµ)

[
φX (τ)φX (−µ)φX (µ− τ)− |φX (τ) |2|φX (µ) |2

]
ω (dτ)ω (dµ)

where for the univariate Exponential case,

φX (τ) =
λ12 + λ2

λ12 + λ2 − iτ
, |φX (τ)|2 = (λ12 + λ2)

2

(λ12 + λ2)
2 + τ 2

.

74



{λ12, λ1, λ2}
{

1
2
, 1
2
, 1
2

} {
1
2
, 1
2
, 1
4

} {
1
2
, 1
2
, 1
8

} {
1
2
, 1
2
, 1
} {

1
2
, 1
2
, 2
}

Υ/ {ρ2Y Xσ2
Y σX} 0.212 48 0.185 87 0.167 46 0.236 62 0.229 98

Ω/ {σ2
ερ

2
Y Xσ

2
Y σ

2
X} 4.4084× 10−2 3.2403× 10−2 2.5317× 10−2 5.6012× 10−2 5.2998× 10−2

AREWMD 0.97644 0.93792 0.90280 1.0004 1.0020
AREWMD/WCIV 1.0792 1.0846 1.0789 1.051 4 1.0069

Table 10: WMD ARE for (Y,X) exponential under homoskedasticity, q = 1. Gaussian kernel.

Then we have that Ω/ (σ2
εσ

2
Y X) = Ω/ {σ2

ερ
2
Y Xσ

2
Y σ

2
X} is, m = 1/λ,

∫
R2

τµ

2π

λ

(λ− iτ)

λ

(λ+ iµ)

 φX (−µ)φX (τ)φX (µ− τ)

−|φX (µ) |2|φX (τ) |2

 exp

(
−1

2

(
τ 2 + µ2

))
dτdµ

=

∫
R2

τµ

2π

λ

(λ− iτ)

λ

(λ+ iµ)
exp

(
−1

2

(
τ 2 + µ2

))
×

[
λ12 + λ2

λ12 + λ2 + iµ

λ12 + λ2
λ12 + λ2 − iτ

λ12 + λ2
λ12 + λ2 − i (µ− τ)

− (λ12 + λ2)
2

(λ12 + λ2)
2 + µ2

(λ12 + λ2)
2

(λ12 + λ2)
2 + τ 2

]
dτdµ

=

∫
R2

τµ

2π

1 + iτm

1 + (τm)2
1− iµm

1 + (µm)2

×

[
(1− iµm2) (1 + iτm2) (1 + i (µ− τ)m2)−

(
1 + ((µ− τ)m2)

2)(
1 + (µm2)

2) (1 + (τm2)
2) (1 + ((µ− τ)m2)

2)
]
exp

(
−1

2

(
τ 2 + µ2

))
dτdµ

= m2
2

∫
R2

(τµ)2

2π

1

1 + (τm)2
1

1 + (µm)2

× (m2τµ+mτ 2m2 − 2mτµm2 +mµ2m2 + 1)(
1 + (µm2)

2) (1 + (τm2)
2) (1 + ((µ− τ)m2)

2) exp(−1

2

(
τ 2 + µ2

))
dτdµ

= m2
2

∫
R2

(τµ)2

2π

1

1 + (τm)2
1

1 + (µm)2

× ((m2 − 2mm2) τµ+mm2 (τ
2 + µ2) + 1)(

1 + (µm2)
2) (1 + (τm2)

2) (1 + ((µ− τ)m2)
2) exp(−1

2

(
τ 2 + µ2

))
dτdµ,

which can be evaluated numerically for given values of {m,m1,m2} or {λ12, λ1, λ2} , see Table

10.

Then, the asymptotic variance of WMD with respect to IV is obtained as

Υ−1ΩΥ−1 = AREWMD
σ2
ε

ρ2Y Xσ
2
Y

,

and we can similarly obtain the ARE with respect to WCIV . We find that WMD can be

sometimes more efficient than IV (when σX is large), but is uniformly less efficient than WCIV,

though the differences are smaller than for Gaussian data.
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WNIV WNIVF WMD WMDF HFUL1 HFUL4 HFUL9
ϕ = 0 q = 3

Med 0.0019 0.0021 0.0165 0.0201 0.0587 0.0823 0.1037
DecR 1.5514 1.5380 2.1156 2.0141 1.0070 1.3113 1.8193
Rej 0.0585 0.0586 0.0643 0.0653 0.0325 0.0644 0.1030

q = 10
Med 0.0232 0.0297 0.1845 0.2275 0.0800 0.1176 0.1901
DecR 2.0877 1.9185 6.7898 2.7965 1.2626 2.0299 2.7117
Rej 0.0700 0.0716 0.1027 0.1117 0.0397 0.0946 0.1297

q = 15
Med 0.0284 0.0403 0.3657 0.4755 0.0890 0.1471 0.2417
DecR 2.4397 2.0094 8.6042 1.1919 1.4153 2.3481 2.9748
Rej 0.0728 0.0751 0.1400 0.2336 0.0453 0.1134 0.1376

ϕ = 0.5 q = 3
Med −0.0135 −0.0132 −0.0109 −0.0072 0.0712 0.0929 0.1233
DecR 1.6605 1.6436 2.1331 2.0507 1.0885 1.4635 1.9495
Rej 0.0468 0.0468 0.0554 0.0562 0.0308 0.0728 0.1111

q = 10
Med 0.0040 0.0102 0.1709 0.2154 0.0812 0.1404 0.2036
DecR 2.1980 1.9844 7.2131 2.7872 1.2888 2.1450 2.7175
Rej 0.0583 0.0595 0.0996 0.1094 0.0407 0.1024 0.1346

q = 15
Med 0.0098 0.0223 0.3251 0.4676 0.0838 0.1558 0.2540
DecR 2.5774 2.1109 9.2929 1.1594 1.4222 2.3938 2.9931
Rej 0.0648 0.0676 0.1300 0.2188 0.0476 0.1243 0.1436

Table 11: Linear IV model M1 : yt = α0 + β0Yt + ε0t, Yt =
√

c/q
n

∑q
j=1Xj,t + ηt. Median bias

(Med), the range between the 0.05 and 0.95 quantiles (DecR), and empirical rejection frequencies
for t-statistics at 5% nominal level (Rej) are reported. Sample size is 500. The elements of Xt

are pairwise independent.

9.2 More Monte Carlo Simulations

In this subsection, we report simulation results regardingM1 considered in Section 6 to illustrate

the poor finite-sample properties of WMD and WMDF in the case that the elements of Xt are

pairwise independent. The sample size now is 500. From Table 11, it is observed that the finite-

sample properties of WMD and WMDF deteriorate severely when q increases, while WCIV and

WCIVF maintain excellent finite-sample properties in all the cases.
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